* equal contribution


Evaluation of a clinical-grade, cryopreserved, ex vivo-expanded stem cell product from cryopreserved primary umbilical cord blood demonstrates multilineage hematopoietic engraftment in mouse xenografts Schaniel C., Papa L., Meseck M., Kintali M., Djedaini M., Zangui M., Iancu-Rubin C., and Hoffman R. Cytotherapy, 2021, 23:841-851



Ex vivo expansion of adult hematopoietic stem and progenitor cells with valproic acid Papa L., Djedaini M., Kinali M., Schaniel C., and Hoffman R. Methods Mol. Biol., 2021, 2185:267-280.




Limited mitochondrial activity coupled with strong expression of CD34, CD90 and EPCR determines the functional fitness of ex vivo expanded human hematopoietic stem cells Papa L., Djedaini M., Martin T.C., Zangui M., Beaumont K.G., Sebra R., Parsons R.Schaniel C., and Hoffman R. Front. Cell Dev. Biol., 2020, 8:592348.



A library of induced pluripotent stem cells from clinically well-characterized, diverse healthy human individuals Schaniel C., Dhanan P., Hu B., Xiong Y, Raghunandan T., Gonzalez D.M. , D’Souza S.L., Yadaw A., Hansen J., Jayaraman G., Mathew M., Machado M., Berger S., Tripodi J., Najfeld V., Garg J., Miller M., Lynch C, Michelis K, Tangirala N., Weerahandi H., Thomas D.C., Sebra S., Mahajan M., Schadt E., Vidovic D., Schürer S.C., Goldfarb J, Azeloglu E.U., Birtwistle M.R., Sobie E.A., Kovacic J.C, Dubois N.C., and Iyengar R. bioRxiv, 2020, 2020.10.29.360909.



Physiology of cardiomyocyte injury in COVID-19 Siddiq M.M, Chan A.T., Miorin L., Arjun Y.S., Beaumont K.G., Kehrer T., White K.M., Cupic A., Tolentino R.E., Hu B., Stern A.D., Tavassoly I., Hansen J., Martinez P., Dubois N., Schaniel C., Iyengar-Kapugandi R., Kukar N., Giustino G., Sud. K., Nirenberg S., Kovatch P., Godlfarb J., Croft L., McLaughlin M.A., Argulian E., Lerakis S., Narula J., Garcia_sastre A., and Iyengar R. medRxiv, 2020, 2020.11.10.20229294.



A human H1-HBB11-GFP reporter embryonic stem cell line (WAe001-A-2) generated using TALEN-based genome editing Alexeeva V., Aydin I.T. Schaniel C., Stranahan A.W., D’Souza S.L., and Bieker J.J. Stem Cell Res., 2020, M45:101837.



Induction of developmental hematopoiesis mediated by transcription factors and the hematopoietic microenvironment. Daniel M.G., Rapp K., Schaniel C., and Moore K.A. ann. N.Y.. Acad. Sci., 2020, 1466: 59-72.




Genomic integrity safeguards self-renewal in embryonic stem cells . Su J., Zhu D., Huo Z., Gingolf J.A., Ang Y-S., Tu J., Zhou R., Lin Y., Luo H., Yang H., Zhao R., Schaniel C., Moore K.A., Lemischka I.R., and Lee D-F. SCell Rep., 2019, 28: 1400-1409.




Oncogenic role of SFRP2 in p53-mutant osteosarcoma development via autocrine and paracrine mechanism. Kim H., Yoo S., Z. R., Xu A. Bernitz J.M., Y Y., Gomes A.M., Daniel M.G., S J., Demiccco E.G., Z J., Moore K.A., Lee D-F., Lemischka I.R., and Schaniel C. Proc. Natl. Acad. Sci. U.S.A., 2018, 115(E11128-E11137.




A Marfan syndrome human induced pluripotent stem cell line with a heterozygous FBN1 c.4082G > A mutation, ISMMSi002-B, for disease modeling. Klein S., Dvornik J.L., Yarrabothula A.R., and Schaniel C. Stem Cell Res., 2017, 23: 73-76.




A human MIXL1 green fluorescent protein reporter embryonic stem cell line engineered using TALEN-based genome editing. Alexeeva V., D’Souza S.L., and Schaniel C. Stem Cell Res., 2016, 19: 93-96.



Genomic imprinting defect in Zfp57 mutant iPS cell lines. McDonald C.M., Liu L., Xiao L., Schaniel C., and Li Z. Stem Cell Res., 2016, 16: 259-263.



Hematopoietic Reprogramming In Vitro Informs In Vivo Identification of Hemogenic Precursors to Definitive Hematopoietic Stem Cells. Pereira C.F.., Chang B., Gomez A., Bernitz J., Papatsenko D., Niu X., Swiers G., Azzoni E. de Brujijn M.F., Schaniel C., Lemischka I.R., and Moore K.A.,. Dev. Cell, 2016, 36: 525-539.




Myeloid dysregulation in a human induced pluripotent stem cell model of PTPN11-associated juvenile myelomonocytic leukemia. Mulero-Navarro S., Sevilla A., Roman A.C., Lee D-F., D’Souza S.L., Pardo S., Riess I., Su J., Cohen N., Schaniel C., Rodriguez N.A., Baccarini A., Brown B.D., Cavé H., Caye A., Strullu M., Yalcin S., Park C.Y., Dhandapany P.S., Yongchao G., Edelmann L., Bahieg S., Raynal P., Flex E., Tartaglia M., Moore K.A., Lemischka I.R., and Gelb, B.D. Cell Rep., 2015, 13: 504-515.



Distribution Analyzer, a methodology for identifying and clustering outlier conditions from single-cell distributions, and its application to a Nanog reporter RNAi screen. Gingold J.A., Coakley E.S., Sue J., Lee D-F.,Lau Z., Zhou H., Felsenfeld D.P., Schaniel C., and Lemischka I.R. BMC Bioinformatics, 2015, 16: 225.



Tbx3 Controls Dppa3 levels and exit from pluripotency toward mesoderm. Waghray A., Saiz N., Jayaprakash A.D., Freire A.G., Papatsenko D., Pereira C.F., Lee D-F., Brosh R., Chang B., Darr H., Gingold J., , Kelley K., Schaniel C., Hadjantonakis A.K., and Lemischka I.R. Stem Cell Reports, 2015, 5: 97-110.



Modeling familial cancer with induced pluripotent stem cells. Lee D-F., Su J., Kim H.S., Chang B., Papatsenko D., Zhao R., Yuan Y., Gingold J., , Xia W., Darr H., Mirzayans R., Hung M-C., Schaniel C., and Lemischka I.R. Cell, 2015, 161: 240-254.



Biology and mechano-response of tendon cells: progress overview and perspectives. Sun H.B., Schaniel C., Leong D.J., and Wang J.H. J. Orthop. Res., 2015, 33:785-792.




A genome-wide RNAi screen identifies opposing functions of Snai1 and Snai2 on the Nanog dependency in reprogramming Gingold J.A., Fidalgo M., Guallar D., Lau Z., Sun Z., Coakley E.S., Sun Z., Zhou H., Faiola F., Huang X., Lee, D-F., Waghray A., Schaniel C., Felsenfeld D.P., Lemischka I.R., and Wang J. Molecular Cell, 2014, 56: 140-152.



Epigenetic reprogramming induces the expansion of cord blood stem cells Chaurasia P., Gajzer D.C., Schaniel C., D’Souza S.L., and Hoffman R. J Clin. Invest., 2014, 124: 2378-2395.



Divisional history and hematopoietic stem cell function during homeostasis Qiu J., Papatsenko D., Niu X., Schaniel C., and Moore K.A. Stem Cell Reports, 2014, 2:473-490.




Induction of a hemogenic program in mouse fibroblasts Pereira C.F., Chang B., Qiu J., Niu X., Papatsenko D., Hendry C.E., Clark N.R., Nomura-Kitabayashi A., Kovacic J.C., Ma’ayan A., Schaniel C., Lemischka I.R., and Moore K. Cell Stem Cell, 2013, 13: 205-218.



MacroH2a variants act as barrier upon reprogramming towards pluripotency Gaspar-Maia A., Qadeer Z., Hasson D., Ratnakumar K., Leu N.A., Leroy G., Liu S., Costanzi C., Valle-Garcia D., Schaniel C., Lemischka I., Garcia B., Pehrson J.R., and Bernstein E. Nat. Commun., 2013, 4: 1565. Erratum in: Nat Commun. (2013) 4: 2090.




Zfp281 mediates Nanog autorepression through recruitment of the NuRD repressor complex and inhibits somatic cell reprogramming Fidalgo M., Faiola F., Pereira C-F. Ding J., Saunders A., Gingold J., Schaniel C., Lemischka I.R., Silva J.C., and Wang J. Proc. Nat. Acad. Sci., 2012, 109: 16202-16207.



Patient-specific induced pluripotent stem cells as a platform for disease modeling, drug discovery and precision personalized medicine Young W., D’Souza S.L., Lemischka I.R., and Schaniel C. Stem Cell Res. & Ther., 2012, S10-010.



Regulation of embryonic and induced pluripotency by Aurora kinase-p53 signaling Lee D-F., Su J., Ang Y-S., Carvajal-Vergara X., Mulero-Navarro S., Pereira C.F., Gingold J., Wang H-L., Zhao R., Sevilla A., Darr H., Williamson A.J.K., Chang B., Niu X., Aguilo F., Flores E.R., Sher Y-P., Hung M-C., Whetton A.D., Gelb B.D., Moore K.A., Snoeck H-W., Ma’ayan A., Schaniel C.*, and Lemischka I.R*. Cell Stem Cell, 2012, 11: 179-194.



Combining competition assays with genetic complementation strategies to dissect mouse ESC self-renewal and pluripotency. Lee D-F., Su J., Sevilla A., Gingold J. Schaniel C., and Lemischka I.R. Nat. Protoc., 2012, 7: 729-248.



MicroRNAs in development, stem cell differentiation and regenerative medicine. Chang B., Lemischka I.R., and Schaniel Regulatory RNAs, 2012, 409-442.




Wif1 dysregulation of the bone marrow niche exhausts hematopoietic stem cells Schaniel C., Sirabella D., Qiu J, Niu X. Lemischka I.R., and Moore K.A. Blood, 2011, 118: 2420-2429.



Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network Ang Y-S., Tsai S-Y., Lee D-F., Monk J., Su J., Ratnakumar K., Ding J, Ge, Y., Darr H., Chang B., Wang J., Rendl M., Bernstein E., Schaniel C., Lemischka I.R. Cell, 2011, 145: 183-197.



Generation of anterior foregut endoderm from human embryonic and induced pluripotent stem cells Green M.D., Chen A., Nostro M-C., D’Souza S.L., Schaniel C., Lemischka I.R., Gouon-Evans V., Keller G. and Snoeck H-W. Nat. Biotechnol., 2011, 29: 267-272.




Towards a complete in-silico, multi-layered embryonic stem cell regulatory network Xu H., Schaniel C., Lemischka I.R., and Ma’ayan A. Wiley Interdiscip. Rev. Syst. Biol. Med., 2010, 2: 708-733.



Exploration of self-renewal and pluripotency in ES cells using RNAi Schaniel C., Lee D-F., Gonsalves F, DasGupta R., and Lemischka I.R. Methods Enzymol., 2010, 477C: 351-365.



Patient-specific induced pluripotent stem cell derived models of LEOPARD syndrome Carvajal-Vergara X., Sevilla A., D’Souza S.L., Ang Y-S., Schaniel C., Lee D-F., Yang L., Kaplan A.D., Adler E.D., Rozov R., Ge Y., Cohen N., Edelmann L.J., Chang B., Waghray A., Su J., Pardo S., Lichtenbelt K.D., Tartaglia M., Gelb B., and Lemischka I.R. Nature, 2010, 465: 808-812.




Genetic models to study quiescent stem cells and their niches Schaniel C., and Moore, K. A. Ann. N.Y. Acad. Sci., 2009, 1176: 26-35.



Smarcc1/Baf155 couples self-renewal gene repression with changes in chromatin structure in mouse embryonic stem cells Schaniel C., Ang Y-S., Ratnakumar K., Cormier C., James T., Bernstein E., Lemischka I.R., and Paddison P. Stem Cells, 2009, 27: 2979-2991.




Delivery of short hairpin RNAs – triggers of gene silencing – into mouse embryonic stem cells Schaniel C., Li F., Schafer X. L., Moore T., Lemischka I. R., and Paddison P. J. Nat. Methods, 2006, 3: 397-400.




Stability and plasticity of wild-type and Pax5-deficient precursor B cells Rolink A.G., Schaniel C., and Melchers F. Immunol. Rev., 2002, 187: 87-95.



A stem cell molecular signature Ivanova N. B., Dimos J. T., Schaniel C., Hackney J. A., Moore K. A., and Lemischka I. R. Science, 2002, 298: 601-604.



Plasticity of Pax5-/- pre-B I cells Bruno L., Schaniel C., and Rolink A. Cells Tissues Organs, 2002, 171: 38-43.



In vitro and in vivo plasticity of Pax5-deficient pre-B I cells Rolink A.G., Schaniel C., Bruno L., and Melchers F. Immunol. Lett., 2002, 82: 35-40



Extensive in vivo self-renewal, long-term reconstitution capacity and hematopoietic multipotency of Pax5-deficient precursor B-cell clones Schaniel C., Gottar M., Roosnek E., Melchers F., and Rolink A.G. Blood, 2002, 99: 2760-2766.



Multiple hematopoietic cell lineages develop in vivo from transplanted Pax5-deficient pre-B I-cell clones Schaniel C.*, Bruno L.*, Melchers F., and Rolink A.G. Blood, 2002, 99: 472-478.




Chemoattractants MDC and TARC are secreted by malignant B-cell precursors following CD40 ligation and support the migration of leukemia- specific T cells Ghia P., Transidico P., Veiga J.P., Schaniel C., Sallusto F., Matsushima K., Sallan S.E., Rolink A.G., Mantovani A., Nadler L.M., and Cardoso A.A. Blood, 2001, 98: 533-540.



Attractions and migrations of lymphoid cells in the organization of humoral immune responses Schaniel C., Rolink A.G., and Melchers F. Adv. Immunol., 2001, 78: 111-168.



Selection events operating at various stages in B cell development Rolink A.G., Schaniel C., Andersson J., and Melchers F. Curr. Opin. Immunol.,2001, 13: 202-207.




The cluster of ABCD chemokines, which organizes T cell-dependent B cell responses Schaniel C., Melchers F., and Rolink A G. Curr. Top. Microbiol. Immunol., 2000, 251: 181-189.




Fidelity and infidelity in commitment to B-lymphocyte lineage development Rolink A. G., Schaniel C., Busslinger M., Nutt S. L., and Melchers F. Immunol. Rev., 2000, 175: 104-111.




The role of chemokines in regulating cell migration during humoral immune responses Melchers F., Rolink A.G., and Schaniel C. Cell, 1999, 99: 351-354.



Four of five RAG-expressing JCk-/- small pre-B II cells have no L chain gene rearrangements: detection by high-efficiency single cell PCR Yamagami Y., ten Boekel E., Schaniel C., Andersson J., Rolink A.G., and Melchers F. Immunity, 1999, 11: 309-316.



Three chemokines with potential functions in T lymphocyte‑independent and ‑dependent B lymphocyte stimulation Schaniel C., Sallusto F., Ruedl C., Sideras P., Melchers F., and Rolink A.G. Eur. J. Immunol., 1999, 29: 2934-2947.



Human macrophage-derived chemokine (MDC) is strongly expressed following activation of both normal and malignant precursor and mature B cells Ghia P., Schaniel C., Rolink A G., Nadler L. M., and Cardoso A. A. Curr. Top. Microbiol. Immunol., 1999, 246: 103-110.



A novel CC chemokine ABCD-1 produced by dendritic cells and activated B cells exclusively attracts activated T lymphocytes Schaniel C., Sallusto F., Sideras P., Melchers F., and Rolink A.G. Curr. Top. Microbiol. Immunol., 1999, 246: 95-101.




Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation Sallusto F., Schaerli P., Loetscher P., Schaniel C., Lenig D., Mackay C.R., Qin S., and Lanzavecchia A. Eur. J. Immunol., 1998, 28: 2760-2769.



Activated murine B lymphocytes and dendritic cells produce a novel CC chemokine which acts selectively on activated T cells Schaniel C., Pardali E., Sallusto F., Speletas M., Ruedl C., Shimizu T., Seidl T., Andersson J., Melchers F., Rolink A.G., and Sideras P. J. Exp. Med., 1998, 188: 451-463.