Publications

  1. Sansó, M., Parua, P.K., Pinto, D., Svensson, J.P., Pagé, V., Bitton, D.A., MacKinnon, S., Garcia, P., Hidalgo, E, Bähler, J., Tanny, J.C. and Fisher, R.P. Cdk9 and H2Bub1 signal to Clr6-CII/Rpd3S to suppress aberrant antisense transcription. Nucleic Acids Res. doi: 10.1093/nar/gkaa474. Online ahead of print, 2020
  2. Parua, P.K. and Fisher, R.P. Dissecting the Pol II transcription cycle and derailing cancer with CDK inhibitors. Nat. Chem. Biol. doi: 10.1038/s41589-020-0563-4, in press, 2020.
  3. A Cdk9-PP1 switch regulates the elongation-termination transition of RNA polymerase II. Parua PK, Booth GT, Sansó M, Benjamin B, Tanny JC, Lis JT, Fisher RP.  Nature 2018 Jun;558(7710):460-464. doi: 10.1038/s41586-018-0214-z. Epub 2018 Jun 13.  PMID: 29899453 https://www.ncbi.nlm.nih.gov/pubmed/29899453
  4. Cdk9 regulates a promoter-proximal checkpoint to modulate RNA polymerase II elongation rate in fission yeast. Booth GT, Parua PK, Sansó M, Fisher RP, Lis JT.  Nat Commun. 2018 Feb 7;9(1):543. doi: 10.1038/s41467-018-03006-4.  PMID:29416031 https://www.ncbi.nlm.nih.gov/pubmed/29416031
  5. Taking Aim at Glycolysis with CDK8 Inhibitors. Fisher RP. Trends Endocrinol Metab. 2018 May;29(5):281-282. doi: 10.1016/j.tem.2018.02.005. Epub 2018 Feb 20.  PMID 29475579 https://www.ncbi.nlm.nih.gov/pubmed/29475579
  6. Elagib, K.E., Lu, C.-H., Mosoyan, G., Khalil, S., Zasadzinska, Foltz, D.R., Balogh, P., Gru, A.A., Fuchs, D.A., Rimsza, L.M., Verhoeyen, E., Sansó, M., Fisher, R.P., Iancu-Rubin, C. and Goldfarb, A.M. Neonatal expression of RNA-binding protein IGF2BP3 regulates the human fetal-adult megakaryocyte transition. J. Clin. Invest. 127: 2365-2377, 2017. PMCID: PMC5451240 https://www.ncbi.nlm.nih.gov/pubmed/28481226
  7. Kalan, S., Amat, R., Schachter, M.M., Kwiakowski, N., Abraham, B.J., Liang, Y., Zhang, T., Olson, C.M., Larochelle, S., Young, R.A., Gray, N.S. and Fisher, R.P. Activation of the p53 transcriptional program sensitizes cancer cells to Cdk7 inhibitors. Cell Reports 21: 467-481, 2017. PMCID: PMC5687273 https://www.ncbi.nlm.nih.gov/pubmed/29020632
  8. Rollins, D.A., Kharlyngdoh, J.B., Coppo, M., Tharmalingam, B., Mimouna, S., Guo, Z., Sacta, m.A., Pufall, M.A., Fisher, R.P., Hu, X., Chinenov, Y. and Rogatsky, I. Glucocorticoid-induced phosphorylation by CDK9 modulates the coactivator functions of transcriptional cofactor GRIP1 in macrophages. Nat. Commun. 8: 1739, 2017. PMCID: PMC5700924 https://www.ncbi.nlm.nih.gov/pubmed/29170386
  9. Fisher, R.P., CDK regulation of transcription by RNAP II: Not over ‘til it’s over? Transcription 8: 81-90, 2017.PMCID: PMC5423476 https://www.ncbi.nlm.nih.gov/pubmed/28005463
  10. Sansó, M., Levin, R.S., Lipp, J.J., Wang, V. Y.-F., Greifenberg, A.K., Quezada, E.M., Ali, A., Ghosh, A., Larochelle, S., Rana, T.M., Geyer, M., Tong, L., Shokat, K.M. and Fisher, R.P. P-TEFb regulation of transcription termination factor Xrn2 revealed by a chemical genetic screen for Cdk9 substrates. Genes Dev. 30: 117-131, 2016. PMCID: PMC4701974 https://www.ncbi.nlm.nih.gov/pubmed/26728557
  11. Fisher, R.P. Getting to S: CDK functions and targets on the path to cell-cycle commitment. F1000Res. 5: 2374, 2016. PMCID: PMC5040153 https://www.ncbi.nlm.nih.gov/pubmed/27746911
  12. http://www.ncbi.nlm.nih.gov/pubmed/24385927Bösken, C.A., Farnung, L., Hintermair, C., Schachter, M.M., Vogel-Bachmayr, K., Blazek, D., Anand, K., Fisher, R.P., Eick, D. and  Geyer, M. The structure and substrate specificity of human Cdk12/Cyclin K. Nat. Commun., 5: 3505, 2014.   http://www.ncbi.nlm.nih.gov/pubmed/24662513
  13. Schachter, M.M., Merrick, K.A., Larochelle, S., Hirschi, A., Zhang, C., Shokat, K.M., Rubin, S.M. and Fisher, R.P. A Cdk7-Cdk4 T-loop phosphorylation cascade promotes G1 progression. Mol. Cell 50: 250-260, 2013. PMCID: PMC3677717 http://www.ncbi.nlm.nih.gov/pubmed/23622515
  14. Sansó, M. and Fisher, R.P. Pause, play, repeat: CDKs push RNAP II’s buttons. Transcription 4: 146-152, 2013. PMCID: PMC3977912 http://www.ncbi.nlm.nih.gov/pubmed/23756342
  15. Schachter, M.M. and Fisher, R.P. The CDK-activating kinase Cdk7: Taking yes for an answer. Cell Cycle 12: 3239-3240, 2013. PMCID: PMC3885630 http://www.ncbi.nlm.nih.gov/pubmed/24036541
  16. Mbogning, J., Nagy, S., Pagé, V., Schwer, B., Shuman, S., Fisher, R.P. and Tanny, J.C. The PAF complex and Prf1/Rtf1 delineate distinct Cdk9-dependent pathways regulating transcription elongation in fission yeast. PLoS Genet., 9: e1004029, 2013. https://www.ncbi.nlm.nih.gov/pubmed/24385927
  17. Merrick, K.A. and Fisher, R.P. Why minimal is not optimal: driving the mammalian cell cycle—and drug discovery—with a physiologic CDK control network. Cell Cycle 11: 2600-2605, 2012. PMCID: PMC3409006 http://www.ncbi.nlm.nih.gov/pubmed/22732498
  18. Horiuchi, D., Huskey, N.E., Kusdra, L., Wohlbold, L., Merrick, K.A., Zhang, C., Creasman, K.J., Shokat, K.M., Fisher, R.P. and Goga, A. Chemical-genetic analysis of CDK2 function reveals an important role in cellular transformation by multiple oncogenic pathways. Proc. Natl. Acad. Sci. USA 109: E1019-1027, 2012. PMCID: PMC3340028 http://www.ncbi.nlm.nih.gov/pubmed/22474407
  19. Amour, C.V., Sansó, M., Bösken, C.A., Lee, K.M., Larochelle. S., Zhang, C., Shokat, K.M., Geyer, M. and Fisher, R.P. Separate domains of fission yeast Cdk9 (P-TEFb) are required for capping enzyme recruitment and primed (Ser7-phosphorylated) CTD substrate recognition. Mol. Cell. Biol. 32: 2372-2383, 2012. PMCID: PMC3434489 http://www.ncbi.nlm.nih.gov/pubmed/22508988
  20. Sansó, M., Lee, K.M., Viladevall. L., Jacques, P.-E., Pagé, V., Nagy, S., Racine, A., St. Amour, C.V., Zhang, C., Shokat, K.M., Schwer, B., Robert, F., Fisher, R.P.* and Tanny, J.C.* A positive feedback loop links opposing functions of P-TEFb/Cdk9 and histone H2B ubiquitylation to regulate transcript elongation in fission yeast. PLoS Genetics 8: e1002822, 2012. PMCID: PMC3410854 http://www.ncbi.nlm.nih.gov/pubmed/22876190
  21. Wohlbold, L., Merrick, K.A., De, S., Larochelle, S., Allen, J.J., Zhang, C., Petrini, J.H.J. and Fisher, R.P. Chemical genetics reveals a specific requirement for Cdk2 activity in the DNA damage response and identifies Nbs1 as a Cdk2 substrate in human cells. PLoS Genetics 8: e1002935, 2012. PMCID: PMC3426557 http://www.ncbi.nlm.nih.gov/pubmed/22927831
  22. Larochelle, S., Amat, R., Glover-Cutter, K., Sansó, M., Zhang, C., Allen, J.J., Shokat, K.M., Bentley, D.L. and Fisher, R.P. Cyclin-dependent kinase control of the initiation-to-elongation switch of RNA polymerase II. Nat. Struct. Mol. Biol. 19: 1108-1115, 2012. PMCID: PMC3746743 http://www.ncbi.nlm.nih.gov/pubmed/23064645
  23. Merrick, K.A., Wohlbold, L., Zhang, C., Allen, J.J., Horiuchi, D., Huskey, N.E., Goga, A., Shokat, K.M. and Fisher, R.P. Switching Cdk2 on or off with small molecules to reveal requirements in human cell proliferation. Mol. Cell 42: 624-636, 2011. PMCID: PMC31190 http://www.ncbi.nlm.nih.gov/pubmed/21658603
  24. Merrick, K.A. and Fisher, R.P. Putting one step before the other: distinct activation pathways for Cdk1 and Cdk2 bring order to the mammalian cell cycle. Cell Cycle 9: 706-714, 2010. PMCID: PMC2851199 http://www.ncbi.nlm.nih.gov/pubmed/20139727
  25. Ray, A., James, M., Larochelle, S., Fisher, R.P. and Blain, S.W. p27Kip1 inhibits cyclin D-cdk4 by two independent modes. Mol. Cell. Biol. 29: 986-999, 2009. PMCID: PMC2643810 http://www.ncbi.nlm.nih.gov/pubmed/19075005
  26. Viladevall, L., St. Amour, C.V., Rosebrock, A., Schneider, S., Zhang, C., Shokat, K.M., Schwer, B., Leatherwood, J.K. and Fisher, R.P. TFIIH and P-TEFb coordinate transcription with capping enzyme recruitment at specific genes in fission yeast. Mol. Cell 33: 738-751, 2009. PMCID: PMC2693121 http://www.ncbi.nlm.nih.gov/pubmed/19328067
  27. Glover-Cutter, K., Larochelle, S., Erickson, B., Zhang, C., Shokat, K,, Fisher, R.P. and Bentley, D.L. TFIIH-associated Cdk7 kinase functions in phosphorylation of CTD Ser7 residues, promoter-proximal pausing and termination by RNA polymerase II. Mol. Cell. Biol. 29: 5455-5464, 2009. PMCID: PMC2756882 http://www.ncbi.nlm.nih.gov/pubmed/19667075
  28. Wohlbold, L. and Fisher, R.P. Behind the wheel and under the hood: Functions of cyclin-dependent kinases in response to DNA damage. DNA Repair 8: 1018-1024, 2009. PMCID: PMC2725215 http://www.ncbi.nlm.nih.gov/pubmed/19464967
  29. Gerber, H.B., Pikman, Y. and Fisher, R.P. The CDK-Activating Kinase (CAK) Csk1 Is Required for Normal Levels of Homologous Recombination and Resistance to DNA Damage in Fission Yeast. PLoS ONE 3: e1492, 2008. PMCID: PMC2200797 http://www.ncbi.nlm.nih.gov/pubmed/18231579
  30. Sordet, O., Larochelle, S., Nicolas, E. Stevens, E.V., Zhang, C., Shokat, K.M., Fisher, R.P. and Pommier, Y. RNA polymerase II is hyperphosphorylated in response to topoisomerase I-DNA cleavage complexes and is associated with transcription- and BRCA1-dependent degradation of toposiomerase I. J. Mol. Biol. 381: 540-549, 2008. PMCID: PMC2754794 http://www.ncbi.nlm.nih.gov/pubmed/18588899
  31. Merrick, K.A., Larochelle, S., Zhang, C., Allen, J.J., Shokat, K.M. and Fisher, R.P. Distinct activation pathways confer cyclin binding specificity on Cdk1 and Cdk2 in human cells. Mol. Cell 32: 662-672, 2008. PMCID: PMC2643088 http://www.ncbi.nlm.nih.gov/pubmed/19061641
  32. Larochelle, S., Merrick, K.A., Terret, M.-E., Wohlbold, L., Barboza, N.M., Zhang, C., Shokat, K.M., Jallepalli, P.V. and Fisher, R.P. Requirements for Cdk7 in the assembly of Cdk1/ cyclin B and activation of Cdk2 revealed by chemical genetics in human cells. Mol. Cell 25: 839-850, 2007. PMCID: PMC1858677 http://www.ncbi.nlm.nih.gov/pubmed/17386261
  33. Burkard, M.E., Randall, C.L., Larochelle, S., Zhang, C., Shokat, K.M., Fisher, R.P. and Jallepalli, P.V. Chemical genetics reveals the requirement for Polo-like kinase 1 activity in positioning RhoA and triggering cytokinesis in human cells. Proc. Natl. Acad. Sci. USA 104: 4383-4388, 2007. PMCID: PMC1838611 http://www.ncbi.nlm.nih.gov/pubmed/17360533
  34. Gamble, M.J. and Fisher, R.P. SET and PARP1 remove DEK from chromatin to permit access by the transcription machinery. Nat. Struct. Mol. Biol. 14: 548-555, 2007. http://www.ncbi.nlm.nih.gov/pubmed/17529993
  35. Larochelle, S., Batliner, J., Gamble, M.J., Barboza, N., Kraybill, B.C., Blethrow, J.D., Shokat, K.M. and Fisher, R.P. Dichotomous but stringent substrate selection by the dual-function Cdk7 complex revealed by chemical genetics. Nat. Struct. Mol. Biol. 13: 55-62, 2006. http://www.ncbi.nlm.nih.gov/pubmed/16327805
  36. Pei, Y., Du, H., Singer, J., St. Amour, C., Granitto, S., Shuman, S. and Fisher, R.P. Cyclin-dependent kinase 9 (Cdk9) of fission yeast is activated by the CDK-activating kinase Csk1, overlaps functionally with the TFIIH-associated kinase Mcs6, and associates with the mRNA cap methyltransferase Pcm1 in vivo. Mol. Cell. Biol. 26: 777-788, 2006. PMCID: PMC1347026 http://www.ncbi.nlm.nih.gov/pubmed/16428435
  37. Wohlbold, L., Larochelle, S., Liao, J.C.-F., Livshits, G., Singer, J., Shokat, K. and Fisher, R.P. The cyclin-dependent kinase (CDK) family member PNQALRE/ CCRK supports cell proliferation but has no intrinsic CDK-activating kinase (CAK) activity. Cell Cycle 5: 546-554, 2006. http://www.ncbi.nlm.nih.gov/pubmed/16552187
  38. Gamble, M.J., Erdjument-Bromage, H., Tempst, P., Freedman, L.P. and Fisher, R.P. The histone chaperone TAF-I/SET/INHAT is required for transcription in vitro of chromatin templates. Mol. Cell. Biol. 25: 797-807, 2005. PMCID: PMC543418 http://www.ncbi.nlm.nih.gov/pubmed/15632079
  39. Lee, K.M., Miklos, I., Du, H., Watt, S., Szilagyi, Z., Saiz, J.E., Madabhushi, R., Penkett, C.J., Sipiczki, M., Bähler, J. and Fisher, R.P. Impairment of the TFIIH-associated CDK-activating kinase selectively affects cell cycle-regulated gene expression in fission yeast. Mol. Biol. Cell 16: 2734-2745, 2005. PMCID: PMC1142420 http://www.ncbi.nlm.nih.gov/pubmed/15829570
  40. Fisher, R.P. Secrets of a double agent: CDK7 in cell-cycle control and transcription. J. Cell Sci. 118: 5171-5180, 2005. http://www.ncbi.nlm.nih.gov/pubmed/16280550
  41. Saiz, J.E. and Fisher, R.P. A CDK-activating kinase network is required in cell cycle control and transcription in fission yeast. Curr. Biol., 12: 1100-1105, 2002. http://www.ncbi.nlm.nih.gov/pubmed/12121616
  42. Garrett, S., Barton, W.A., Knights, R., Jin, P., Morgan, D.O. and Fisher, R.P. Reciprocal activation by cyclin-dependent kinases 2 and 7 is directed by substrate specificity determinants outside the T loop. Mol. Cell. Biol., 21: 88-99, 2001. PMCID: PMC88783 http://www.ncbi.nlm.nih.gov/pubmed/11113184
  43. Larochelle, S., Chen, J., Knights, R., Pandur, J., Morcillo, P. Erdjument-Bromage, H., Tempst, P., Suter, B., and Fisher, R.P. T-loop phosphorylation stabilizes the CDK7-cyclin H-MAT1 complex in vivo and regulates its CTD kinase activity. EMBO J., 20: 3749-3759, 2001. PMCID: PMC125544 http://www.ncbi.nlm.nih.gov/pubmed/11447116
  44. Pei, Y., Schwer, B., Saiz, J., Fisher, R.P. and Shuman, S. RNA triphosphatase is essential in Schizosaccharomyces pombe and Candida albicans. BMC Microbiology 1: 29, 2001. PMCID: PMC60989 http://www.ncbi.nlm.nih.gov/pubmed/11737862
  45. Lee, K.M., Saiz, J.E., Barton, W.A. and Fisher, R.P. Cdc2 activation in fission yeast depends on Mcs6 and Csk1, two partially redundant Cdk-activating kinases (CAKs). Curr. Biol., 9: 441-444, 1999. http://www.ncbi.nlm.nih.gov/pubmed/10226032
  46. Levine, K., Kiang, L., Jacobson, M., Fisher, R.P. and Cross, F.R. Directed evolution to bypass cyclin requirements for the budding yeast Cdk. Cell, 4: 353-363, 1999. http://www.ncbi.nlm.nih.gov/pubmed/10518216
  47. Larochelle, S., Pandur, J., Fisher, R.P., Salz, H.K. and Suter, B. Cdk7 is essential for mitosis and for in vivo Cdk-activating kinase activity. Genes Dev., 12: 370-381, 1998. PMCID: PMC316490 http://www.ncbi.nlm.nih.gov/pubmed/9450931
  48. Shiekhattar, R., Mermelstein, F., Fisher, R.P., Drapkin, R., Dynlacht, B., Wessling, H.C., Morgan, D.O. and Reinberg, D. Cdk-activating kinase (CAK) complex is a component of human transcription factor IIH.  Nature, 374: 283-287, 1995. http://www.ncbi.nlm.nih.gov/pubmed/7533895
  49. Fisher, R.P., Jin, P., Chamberlin, H.M. and Morgan, D.O. Alternative mechanisms of CAK assembly require an assembly factor or an activating kinase.  Cell, 83: 47-57, 1995. http://www.ncbi.nlm.nih.gov/pubmed/7553872
  50. Fisher, R.P. and Morgan, D.O. A novel cyclin associates with MO15/CDK7 to form the CDK-activating kinase.  Cell, 78: 713-724, 1994. http://www.ncbi.nlm.nih.gov/pubmed/8069918