- Sansó, M., Parua, P.K., Pinto, D., Svensson, J.P., Pagé, V., Bitton, D.A., MacKinnon, S., Garcia, P., Hidalgo, E, Bähler, J., Tanny, J.C. and Fisher, R.P. Cdk9 and H2Bub1 signal to Clr6-CII/Rpd3S to suppress aberrant antisense transcription. Nucleic Acids Res. doi: 10.1093/nar/gkaa474. Online ahead of print, 2020
- Parua, P.K. and Fisher, R.P. Dissecting the Pol II transcription cycle and derailing cancer with CDK inhibitors. Nat. Chem. Biol. doi: 10.1038/s41589-020-0563-4, in press, 2020.
- A Cdk9-PP1 switch regulates the elongation-termination transition of RNA polymerase II. Parua PK, Booth GT, Sansó M, Benjamin B, Tanny JC, Lis JT, Fisher RP. Nature 2018 Jun;558(7710):460-464. doi: 10.1038/s41586-018-0214-z. Epub 2018 Jun 13. PMID: 29899453 https://www.ncbi.nlm.nih.gov/pubmed/29899453
- Cdk9 regulates a promoter-proximal checkpoint to modulate RNA polymerase II elongation rate in fission yeast. Booth GT, Parua PK, Sansó M, Fisher RP, Lis JT. Nat Commun. 2018 Feb 7;9(1):543. doi: 10.1038/s41467-018-03006-4. PMID:29416031 https://www.ncbi.nlm.nih.gov/pubmed/29416031
- Taking Aim at Glycolysis with CDK8 Inhibitors. Fisher RP. Trends Endocrinol Metab. 2018 May;29(5):281-282. doi: 10.1016/j.tem.2018.02.005. Epub 2018 Feb 20. PMID 29475579 https://www.ncbi.nlm.nih.gov/pubmed/29475579
- Elagib, K.E., Lu, C.-H., Mosoyan, G., Khalil, S., Zasadzinska, Foltz, D.R., Balogh, P., Gru, A.A., Fuchs, D.A., Rimsza, L.M., Verhoeyen, E., Sansó, M., Fisher, R.P., Iancu-Rubin, C. and Goldfarb, A.M. Neonatal expression of RNA-binding protein IGF2BP3 regulates the human fetal-adult megakaryocyte transition. J. Clin. Invest. 127: 2365-2377, 2017. PMCID: PMC5451240 https://www.ncbi.nlm.nih.gov/pubmed/28481226
- Kalan, S., Amat, R., Schachter, M.M., Kwiakowski, N., Abraham, B.J., Liang, Y., Zhang, T., Olson, C.M., Larochelle, S., Young, R.A., Gray, N.S. and Fisher, R.P. Activation of the p53 transcriptional program sensitizes cancer cells to Cdk7 inhibitors. Cell Reports 21: 467-481, 2017. PMCID: PMC5687273 https://www.ncbi.nlm.nih.gov/pubmed/29020632
- Rollins, D.A., Kharlyngdoh, J.B., Coppo, M., Tharmalingam, B., Mimouna, S., Guo, Z., Sacta, m.A., Pufall, M.A., Fisher, R.P., Hu, X., Chinenov, Y. and Rogatsky, I. Glucocorticoid-induced phosphorylation by CDK9 modulates the coactivator functions of transcriptional cofactor GRIP1 in macrophages. Nat. Commun. 8: 1739, 2017. PMCID: PMC5700924 https://www.ncbi.nlm.nih.gov/pubmed/29170386
- Fisher, R.P., CDK regulation of transcription by RNAP II: Not over ‘til it’s over? Transcription 8: 81-90, 2017.PMCID: PMC5423476 https://www.ncbi.nlm.nih.gov/pubmed/28005463
- Sansó, M., Levin, R.S., Lipp, J.J., Wang, V. Y.-F., Greifenberg, A.K., Quezada, E.M., Ali, A., Ghosh, A., Larochelle, S., Rana, T.M., Geyer, M., Tong, L., Shokat, K.M. and Fisher, R.P. P-TEFb regulation of transcription termination factor Xrn2 revealed by a chemical genetic screen for Cdk9 substrates. Genes Dev. 30: 117-131, 2016. PMCID: PMC4701974 https://www.ncbi.nlm.nih.gov/pubmed/26728557
- Fisher, R.P. Getting to S: CDK functions and targets on the path to cell-cycle commitment. F1000Res. 5: 2374, 2016. PMCID: PMC5040153 https://www.ncbi.nlm.nih.gov/pubmed/27746911
- http://www.ncbi.nlm.nih.gov/pubmed/24385927Bösken, C.A., Farnung, L., Hintermair, C., Schachter, M.M., Vogel-Bachmayr, K., Blazek, D., Anand, K., Fisher, R.P., Eick, D. and Geyer, M. The structure and substrate specificity of human Cdk12/Cyclin K. Nat. Commun., 5: 3505, 2014. http://www.ncbi.nlm.nih.gov/pubmed/24662513
- Schachter, M.M., Merrick, K.A., Larochelle, S., Hirschi, A., Zhang, C., Shokat, K.M., Rubin, S.M. and Fisher, R.P. A Cdk7-Cdk4 T-loop phosphorylation cascade promotes G1 progression. Mol. Cell 50: 250-260, 2013. PMCID: PMC3677717 http://www.ncbi.nlm.nih.gov/pubmed/23622515
- Sansó, M. and Fisher, R.P. Pause, play, repeat: CDKs push RNAP II’s buttons. Transcription 4: 146-152, 2013. PMCID: PMC3977912 http://www.ncbi.nlm.nih.gov/pubmed/23756342
- Schachter, M.M. and Fisher, R.P. The CDK-activating kinase Cdk7: Taking yes for an answer. Cell Cycle 12: 3239-3240, 2013. PMCID: PMC3885630 http://www.ncbi.nlm.nih.gov/pubmed/24036541
- Mbogning, J., Nagy, S., Pagé, V., Schwer, B., Shuman, S., Fisher, R.P. and Tanny, J.C. The PAF complex and Prf1/Rtf1 delineate distinct Cdk9-dependent pathways regulating transcription elongation in fission yeast. PLoS Genet., 9: e1004029, 2013. https://www.ncbi.nlm.nih.gov/pubmed/24385927
- Merrick, K.A. and Fisher, R.P. Why minimal is not optimal: driving the mammalian cell cycle—and drug discovery—with a physiologic CDK control network. Cell Cycle 11: 2600-2605, 2012. PMCID: PMC3409006 http://www.ncbi.nlm.nih.gov/pubmed/22732498
- Horiuchi, D., Huskey, N.E., Kusdra, L., Wohlbold, L., Merrick, K.A., Zhang, C., Creasman, K.J., Shokat, K.M., Fisher, R.P. and Goga, A. Chemical-genetic analysis of CDK2 function reveals an important role in cellular transformation by multiple oncogenic pathways. Proc. Natl. Acad. Sci. USA 109: E1019-1027, 2012. PMCID: PMC3340028 http://www.ncbi.nlm.nih.gov/pubmed/22474407
- Amour, C.V., Sansó, M., Bösken, C.A., Lee, K.M., Larochelle. S., Zhang, C., Shokat, K.M., Geyer, M. and Fisher, R.P. Separate domains of fission yeast Cdk9 (P-TEFb) are required for capping enzyme recruitment and primed (Ser7-phosphorylated) CTD substrate recognition. Mol. Cell. Biol. 32: 2372-2383, 2012. PMCID: PMC3434489 http://www.ncbi.nlm.nih.gov/pubmed/22508988
- Sansó, M., Lee, K.M., Viladevall. L., Jacques, P.-E., Pagé, V., Nagy, S., Racine, A., St. Amour, C.V., Zhang, C., Shokat, K.M., Schwer, B., Robert, F., Fisher, R.P.* and Tanny, J.C.* A positive feedback loop links opposing functions of P-TEFb/Cdk9 and histone H2B ubiquitylation to regulate transcript elongation in fission yeast. PLoS Genetics 8: e1002822, 2012. PMCID: PMC3410854 http://www.ncbi.nlm.nih.gov/pubmed/22876190
- Wohlbold, L., Merrick, K.A., De, S., Larochelle, S., Allen, J.J., Zhang, C., Petrini, J.H.J. and Fisher, R.P. Chemical genetics reveals a specific requirement for Cdk2 activity in the DNA damage response and identifies Nbs1 as a Cdk2 substrate in human cells. PLoS Genetics 8: e1002935, 2012. PMCID: PMC3426557 http://www.ncbi.nlm.nih.gov/pubmed/22927831
- Larochelle, S., Amat, R., Glover-Cutter, K., Sansó, M., Zhang, C., Allen, J.J., Shokat, K.M., Bentley, D.L. and Fisher, R.P. Cyclin-dependent kinase control of the initiation-to-elongation switch of RNA polymerase II. Nat. Struct. Mol. Biol. 19: 1108-1115, 2012. PMCID: PMC3746743 http://www.ncbi.nlm.nih.gov/pubmed/23064645
- Merrick, K.A., Wohlbold, L., Zhang, C., Allen, J.J., Horiuchi, D., Huskey, N.E., Goga, A., Shokat, K.M. and Fisher, R.P. Switching Cdk2 on or off with small molecules to reveal requirements in human cell proliferation. Mol. Cell 42: 624-636, 2011. PMCID: PMC31190 http://www.ncbi.nlm.nih.gov/pubmed/21658603
- Merrick, K.A. and Fisher, R.P. Putting one step before the other: distinct activation pathways for Cdk1 and Cdk2 bring order to the mammalian cell cycle. Cell Cycle 9: 706-714, 2010. PMCID: PMC2851199 http://www.ncbi.nlm.nih.gov/pubmed/20139727
- Ray, A., James, M., Larochelle, S., Fisher, R.P. and Blain, S.W. p27Kip1 inhibits cyclin D-cdk4 by two independent modes. Mol. Cell. Biol. 29: 986-999, 2009. PMCID: PMC2643810 http://www.ncbi.nlm.nih.gov/pubmed/19075005
- Viladevall, L., St. Amour, C.V., Rosebrock, A., Schneider, S., Zhang, C., Shokat, K.M., Schwer, B., Leatherwood, J.K. and Fisher, R.P. TFIIH and P-TEFb coordinate transcription with capping enzyme recruitment at specific genes in fission yeast. Mol. Cell 33: 738-751, 2009. PMCID: PMC2693121 http://www.ncbi.nlm.nih.gov/pubmed/19328067
- Glover-Cutter, K., Larochelle, S., Erickson, B., Zhang, C., Shokat, K,, Fisher, R.P. and Bentley, D.L. TFIIH-associated Cdk7 kinase functions in phosphorylation of CTD Ser7 residues, promoter-proximal pausing and termination by RNA polymerase II. Mol. Cell. Biol. 29: 5455-5464, 2009. PMCID: PMC2756882 http://www.ncbi.nlm.nih.gov/pubmed/19667075
- Wohlbold, L. and Fisher, R.P. Behind the wheel and under the hood: Functions of cyclin-dependent kinases in response to DNA damage. DNA Repair 8: 1018-1024, 2009. PMCID: PMC2725215 http://www.ncbi.nlm.nih.gov/pubmed/19464967
- Gerber, H.B., Pikman, Y. and Fisher, R.P. The CDK-Activating Kinase (CAK) Csk1 Is Required for Normal Levels of Homologous Recombination and Resistance to DNA Damage in Fission Yeast. PLoS ONE 3: e1492, 2008. PMCID: PMC2200797 http://www.ncbi.nlm.nih.gov/pubmed/18231579
- Sordet, O., Larochelle, S., Nicolas, E. Stevens, E.V., Zhang, C., Shokat, K.M., Fisher, R.P. and Pommier, Y. RNA polymerase II is hyperphosphorylated in response to topoisomerase I-DNA cleavage complexes and is associated with transcription- and BRCA1-dependent degradation of toposiomerase I. J. Mol. Biol. 381: 540-549, 2008. PMCID: PMC2754794 http://www.ncbi.nlm.nih.gov/pubmed/18588899
- Merrick, K.A., Larochelle, S., Zhang, C., Allen, J.J., Shokat, K.M. and Fisher, R.P. Distinct activation pathways confer cyclin binding specificity on Cdk1 and Cdk2 in human cells. Mol. Cell 32: 662-672, 2008. PMCID: PMC2643088 http://www.ncbi.nlm.nih.gov/pubmed/19061641
- Larochelle, S., Merrick, K.A., Terret, M.-E., Wohlbold, L., Barboza, N.M., Zhang, C., Shokat, K.M., Jallepalli, P.V. and Fisher, R.P. Requirements for Cdk7 in the assembly of Cdk1/ cyclin B and activation of Cdk2 revealed by chemical genetics in human cells. Mol. Cell 25: 839-850, 2007. PMCID: PMC1858677 http://www.ncbi.nlm.nih.gov/pubmed/17386261
- Burkard, M.E., Randall, C.L., Larochelle, S., Zhang, C., Shokat, K.M., Fisher, R.P. and Jallepalli, P.V. Chemical genetics reveals the requirement for Polo-like kinase 1 activity in positioning RhoA and triggering cytokinesis in human cells. Proc. Natl. Acad. Sci. USA 104: 4383-4388, 2007. PMCID: PMC1838611 http://www.ncbi.nlm.nih.gov/pubmed/17360533
- Gamble, M.J. and Fisher, R.P. SET and PARP1 remove DEK from chromatin to permit access by the transcription machinery. Nat. Struct. Mol. Biol. 14: 548-555, 2007. http://www.ncbi.nlm.nih.gov/pubmed/17529993
- Larochelle, S., Batliner, J., Gamble, M.J., Barboza, N., Kraybill, B.C., Blethrow, J.D., Shokat, K.M. and Fisher, R.P. Dichotomous but stringent substrate selection by the dual-function Cdk7 complex revealed by chemical genetics. Nat. Struct. Mol. Biol. 13: 55-62, 2006. http://www.ncbi.nlm.nih.gov/pubmed/16327805
- Pei, Y., Du, H., Singer, J., St. Amour, C., Granitto, S., Shuman, S. and Fisher, R.P. Cyclin-dependent kinase 9 (Cdk9) of fission yeast is activated by the CDK-activating kinase Csk1, overlaps functionally with the TFIIH-associated kinase Mcs6, and associates with the mRNA cap methyltransferase Pcm1 in vivo. Mol. Cell. Biol. 26: 777-788, 2006. PMCID: PMC1347026 http://www.ncbi.nlm.nih.gov/pubmed/16428435
- Wohlbold, L., Larochelle, S., Liao, J.C.-F., Livshits, G., Singer, J., Shokat, K. and Fisher, R.P. The cyclin-dependent kinase (CDK) family member PNQALRE/ CCRK supports cell proliferation but has no intrinsic CDK-activating kinase (CAK) activity. Cell Cycle 5: 546-554, 2006. http://www.ncbi.nlm.nih.gov/pubmed/16552187
- Gamble, M.J., Erdjument-Bromage, H., Tempst, P., Freedman, L.P. and Fisher, R.P. The histone chaperone TAF-I/SET/INHAT is required for transcription in vitro of chromatin templates. Mol. Cell. Biol. 25: 797-807, 2005. PMCID: PMC543418 http://www.ncbi.nlm.nih.gov/pubmed/15632079
- Lee, K.M., Miklos, I., Du, H., Watt, S., Szilagyi, Z., Saiz, J.E., Madabhushi, R., Penkett, C.J., Sipiczki, M., Bähler, J. and Fisher, R.P. Impairment of the TFIIH-associated CDK-activating kinase selectively affects cell cycle-regulated gene expression in fission yeast. Mol. Biol. Cell 16: 2734-2745, 2005. PMCID: PMC1142420 http://www.ncbi.nlm.nih.gov/pubmed/15829570
- Fisher, R.P. Secrets of a double agent: CDK7 in cell-cycle control and transcription. J. Cell Sci. 118: 5171-5180, 2005. http://www.ncbi.nlm.nih.gov/pubmed/16280550
- Saiz, J.E. and Fisher, R.P. A CDK-activating kinase network is required in cell cycle control and transcription in fission yeast. Curr. Biol., 12: 1100-1105, 2002. http://www.ncbi.nlm.nih.gov/pubmed/12121616
- Garrett, S., Barton, W.A., Knights, R., Jin, P., Morgan, D.O. and Fisher, R.P. Reciprocal activation by cyclin-dependent kinases 2 and 7 is directed by substrate specificity determinants outside the T loop. Mol. Cell. Biol., 21: 88-99, 2001. PMCID: PMC88783 http://www.ncbi.nlm.nih.gov/pubmed/11113184
- Larochelle, S., Chen, J., Knights, R., Pandur, J., Morcillo, P. Erdjument-Bromage, H., Tempst, P., Suter, B., and Fisher, R.P. T-loop phosphorylation stabilizes the CDK7-cyclin H-MAT1 complex in vivo and regulates its CTD kinase activity. EMBO J., 20: 3749-3759, 2001. PMCID: PMC125544 http://www.ncbi.nlm.nih.gov/pubmed/11447116
- Pei, Y., Schwer, B., Saiz, J., Fisher, R.P. and Shuman, S. RNA triphosphatase is essential in Schizosaccharomyces pombe and Candida albicans. BMC Microbiology 1: 29, 2001. PMCID: PMC60989 http://www.ncbi.nlm.nih.gov/pubmed/11737862
- Lee, K.M., Saiz, J.E., Barton, W.A. and Fisher, R.P. Cdc2 activation in fission yeast depends on Mcs6 and Csk1, two partially redundant Cdk-activating kinases (CAKs). Curr. Biol., 9: 441-444, 1999. http://www.ncbi.nlm.nih.gov/pubmed/10226032
- Levine, K., Kiang, L., Jacobson, M., Fisher, R.P. and Cross, F.R. Directed evolution to bypass cyclin requirements for the budding yeast Cdk. Cell, 4: 353-363, 1999. http://www.ncbi.nlm.nih.gov/pubmed/10518216
- Larochelle, S., Pandur, J., Fisher, R.P., Salz, H.K. and Suter, B. Cdk7 is essential for mitosis and for in vivo Cdk-activating kinase activity. Genes Dev., 12: 370-381, 1998. PMCID: PMC316490 http://www.ncbi.nlm.nih.gov/pubmed/9450931
- Shiekhattar, R., Mermelstein, F., Fisher, R.P., Drapkin, R., Dynlacht, B., Wessling, H.C., Morgan, D.O. and Reinberg, D. Cdk-activating kinase (CAK) complex is a component of human transcription factor IIH. Nature, 374: 283-287, 1995. http://www.ncbi.nlm.nih.gov/pubmed/7533895
- Fisher, R.P., Jin, P., Chamberlin, H.M. and Morgan, D.O. Alternative mechanisms of CAK assembly require an assembly factor or an activating kinase. Cell, 83: 47-57, 1995. http://www.ncbi.nlm.nih.gov/pubmed/7553872
- Fisher, R.P. and Morgan, D.O. A novel cyclin associates with MO15/CDK7 to form the CDK-activating kinase. Cell, 78: 713-724, 1994. http://www.ncbi.nlm.nih.gov/pubmed/8069918