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Figure 16 A spatial grid representing the average gene expression per box.

1. Spatial grid.

To view a rough representation of the data, we will create and plot a spatial grid
(Fig. 16).

my_giotto_object <- createSpatialGrid(gobject D my_giotto_object,

sdimx_stepsize D 500,

sdimy_stepsize D 500,

minimum_padding D 0)

# Visualize spatial grid

spatPlot(gobject D my_giotto_object,

cell_color D ’leiden_clus’,

point_size D 4,

show_grid D T,

grid_color D ’grey’,

spatial_grid_name D ’spatial_grid’)

2. Spatial network.

Prior to running spatial tissue composition and spatial gene expression analyses, as
well as an HMRF analysis, we must create a spatial network, which provides spot res-
olution. In this example, we will use a Delaunay network. To assess network statistics
for a Delaunay network, we can create the following plot (Fig. 17).

plotStatDelaunayNetwork(gobject D my_giotto_object, maximum_distance D 400)

We can use the above plots to inform our parameter selection during network creation.

my_giotto_object <- createSpatialNetwork(gobject D my_giotto_object,

minimum_k D 6,

maximum_distance_delaunay D 350)

After creating the network, we will visualize our network (Fig. 18A), with each spot
labeled by cluster.
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Figure 17 An overview of the network statistics for a Delaunay network. (A) The distribution of cell-cell dis-
tances. (B) The distribution of cell-cell distances based on neighbor ranking. (C) The count of neighbors per
cell.

spatPlot(gobject D my_giotto_object,

show_network D T,

point_shape D "no_border",

network_color D ’black’,

spatial_network_name D ’Delaunay_network’,

point_size D 3,

cell_color D "leiden_clus",

coord_fix_ratio D 1)

The results can be also overlaid with image information (Fig. 18B).

3. Spatial gene expression patterns.

In the following example, we will use binSpect to analyze spatially coherent gene
patterns. This analysis requires that a spatial network be created beforehand. The
following function creates a matrix that displays each gene and its score as well as
statistical signi!cance (p-value).Del Rossi et al.
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Figure 18 Visualization of the spatial network. (A) A visual representation of a Delaunay network
connecting each spot of our data. (B) Delaunay network overlaid on an H&E-stained image.
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Figure 19 Spatial gene plots of 4 selected genes with different patterns.

binspect_k <- binSpect(gobject D my_giotto_object,

bin_method D "kmeans",

expression_values D "normalized",

spatial_network_name D "Delaunay_network")

We can now visualize our results. We have chosen 4 interesting genes that have dif-
ferent patterns to visualize (Fig. 19): Del Rossi et al.
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Figure 20 Heatmap representing spatial correlation genes.

interesting_genes D c("IGFBP4", "KRT1", "MZB1", "SPRR1B")

spatGenePlot(gobject D my_giotto_object,

expression_values D "scaled",

genes D interesting_genes,

cow_n_col D 2,

point_size D 2.5)

4. Spatial gene co-expression modules.

First, we will detect spatial correlation genes and calculate spatial correlation
scores.

ext_spatial_genes D binspect_k[1:500]$genes

spat_cor_netw_DT D detectSpatialCorGenes(my_giotto_object,

method D ’network’,

spatial_network_name D ’Delaunay_network’,

subset_genes D ext_spatial_genes)

Now, we can cluster and visualize the correlation scores using a heatmap
(Fig. 20).

spat_cor_netw_DT D clusterSpatialCorGenes(spat_cor_netw_DT,

name D ’spat_netw_clus’,

k D 8)

heatmSpatialCorGenes(gobject D my_giotto_object,

spatCorObject D spat_cor_netw_DT,

use_clus_name D ’spat_netw_clus’)

Now we can create metagenes from the cluster modules created in the previous step.
Following analysis, we will plot metagenes per cluster (Fig. 21).
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Figure 21 Spatial plot representing metagenes created from cluster modules.

cluster_genes_DT D showSpatialCorGenes(spat_cor_netw_DT,

use_clus_name D ’spat_netw_clus’,

show_top_genes D 1)

top40_per_module D cluster_genes_DT[, head(.SD, 40), by D clus]

# 3. create metagenes from cluster modules and visualize

cluster_genes D top40_per_module$clus; names(cluster_genes) D top40_per_module$gene_ID

my_giotto_object D createMetagenes(my_giotto_object,

gene_clusters D cluster_genes,

name D ’cluster_metagene’)

spatCellPlot(my_giotto_object,

spat_enr_names D ’cluster_metagene’,

cell_annotation_values D as.character(c(1:8)),

point_size D 1.5,

cow_n_col D 3)

BASIC
PROTOCOL 6

SPATIAL DOMAIN DETECTION BY USING A HIDDEN MARKOV RANDOM
FIELD MODEL

Whereas the spatial patterns of individual genes can be identi!ed by using the previous
protocol, additional methods are needed to characterize the spatial organization of cell
states de!ned by the combinatorial pattern of all genes. To this end, Giotto implements a
hidden Markov random !eld (HMRF) (Zhu, Shah, Dries, Cai, & Yuan, 2018) to identify
spatial coherent domains. A spatial domain may be formed by a cluster of cells from the
same cell type, but more generally consists of a mixture of cell types that share similar
expression patterns of spatial genes. Del Rossi et al.
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The protocols described above are standard in the sense that they require minimal infor-
mation (gene expression matrix and spatial coordinates) and address the most common
tasks. However, further analyses are needed to gain additional insights or to incorporate
additional data information. In the following section, we present two support protocols
as concrete examples.

Necessary Resources

See Basic Protocol 1

1. Implementation.

In addition to examining the spatial pattern of individual genes, Giotto also allows
users to identify the spatial coherence at the cell state level. This is achieved through
the use of a hidden Markov random !eld (HMRF), a method that assigns clustering by
considering both the expression of the group of cells and that of its spatial neighbors.
Unlike the previous methods of clustering which are performed purely on the expres-
sion space and then mapped onto spatial data, HMRF requires the use of a spatial
network (either kNN or Delaunay).

We will be assuming that the reader is continuing from after the generation of the
Delaunay network shown in the previous section. Results can be viewed using
viewHMRFresults2D(), and the annotations can be added to the Giotto object
using addHMRF(). The following code generates new !les, so we will !rst create a
new directory and then run our HMRF analysis.

hmrf_folder <- paste0(path.expand(save_directory),’/’,’11_HMRF/’)

if(!file.exists(hmrf_folder)) dir.create(hmrf_folder, recursive D T)

# input is the top 40 genes per co-expression module

HMRF_spat_genes D doHMRF(gobject D my_giotto_object,

expression_values D "normalized",

spatial_genes D names(cluster_genes),

spatial_network_name D "Delaunay_network",

zscore D "none",

k D 8,

betas D c(0,5,6),

output_folder D paste0(hmrf_folder, ’/’, ’HMRF_output2’))

## add HMRF of interest to giotto object

my_giotto_object D addHMRF(gobject D my_giotto_object,

HMRFoutput D HMRF_spat_genes,

k D 8, betas_to_add D c(0, 10, 15, 20),

hmrf_name D ’HMRF’)

We can visualize our results over a spatial plot (Fig. 22).

spatPlot2D(my_giotto_object,

cell_color D ’HMRF_k8_b.0’,

show_image D TRUE,

point_size D 4.75,

coord_fix_ratio D 1)

spatPlot2D(my_giotto_object,

cell_color D ’HMRF_k8_b.20’,

show_image D TRUE,

point_size D 4.75,

coord_fix_ratio D 1)

Del Rossi et al.

26 of 40

Current Protocols



4
5
6

8
7

1
2
3

4
5
6

8
7

-8000

-10000

5000
A B

7000 9000 11000

y-
co
or
di
na
te
s

x-coordinates

HMRF_k8_b.0

y-
co
or
di
na
te
s

x-coordinates

HMRF_k8_b.20
-2000

-4000

-6000

-8000

-10000

5000 7000 9000 11000

-2000

-4000

-60003
2
1

Figure 22 HMRF results with (A) beta D 0 and (B) beta D 20.

SUPPORT
PROTOCOL 1

SPATIAL PROXIMITY−ASSOCIATED CELL-CELL INTERACTIONS

In this support protocol, we will !rst assess spatial organization at the cellular level.
Giotto can use the spatial network obtained in Basic Protocol 5 to calculate how fre-
quently cell types, or other spatial annotations, are found in close proximity to each other.
Visualization of these results is provided through barplot, network, or heatmap represen-
tations. Next, we will demonstrate how the unique spatial domain organization of a tissue,
as discussed in Basic Protocol 6, might (in)directly affect gene expression and signaling
pathways Giotto introduces a number of complementary methods. First, Giotto identi!es
interaction-changed genes (ICG) by examining which genes are differentially expressed
when a pair of cell types interact. In other words, these genes are up- or down-regulated
in one cell type when in close spatial proximity to another cell type. Second, the results
of individual ICGs can be combined to explore, in an unbiased manner, where a pair of
genes are differentially expressed in two neighboring cell types. In this latter analysis,
any identi!ed gene pair does not necessarily need to be linked at the molecular level, and
the expression levels of both genes can be up-regulated, down-regulated, or unchanged.
Finally, Giotto provides a method to identify ligand-receptor interactions between neigh-
boring cells. More speci!cally, it uses known ligand-receptor pairs as proxies to examine
how a pair of cells communicate when they are in close physical proximity, such that one
cell expresses increased levels of the ligand and the other cell of the cognate receptor.

Necessary Resources

See Basic Protocol 1

1. Cell proximity enrichment.

We will run an analysis to assess how frequently two cell types are found in close
spatial proximity by comparing the observed and expected cell-to-cell interactions
within the created spatial network. Here we use the leiden clustering results as proxies
for cell types for each ST spot.

cell_proximities D cellProximityEnrichment(gobject D my_giotto_object,

cluster_column D ’leiden_clus’,

spatial_network_name D ’Delaunay_network’,

adjust_method D ’fdr’,

number_of_simulations D 1000)

Del Rossi et al.
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Figure 23 Barplot depicting the ratio of observed over expected frequencies of pairwise interact-
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Figure 24 Visualization of the cell proximity network. Enriched or depleted interactions are de-
picted in red and green, respectively. Width of the edges indicates the strength of enrichment or
depletion.

Now we can visualize our cell-to-cell proximity results in a variety of ways, such as
a barplot (Fig. 23).

cellProximityBarplot(gobject D my_giotto_object,

CPscore D cell_proximities,

min_orig_ints D 3,

min_sim_ints D 3)

We can also show a cell-to-cell proximity network, including self-edges (Fig. 24).Del Rossi et al.
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Figure 25 The total number of interaction changed genes (ICG). The corresponding spatial con-
text is shown in the x- and y-axis.

cellProximityNetwork(gobject D my_giotto_object,

CPscore D cell_proximities,

remove_self_edges D F,

self_loop_strength D 0.3,

only_show_enrichment_edges D F,

rescale_edge_weights D T,

node_size D 8,

edge_weight_range_depletion D c(1,2),

edge_weight_range_enrichment D c(2,5))

2. Interaction-changed genes (ICGs).

Next, we will assess the interaction-changed genes (ICGs) that are found to be dif-
ferentially expressed when 2 spatial domains, identi!ed in Basic Protocol 6, are in
proximity. First, we !nd our ICGs and visualize how many ICGs are shared between
neighbor cells (Fig. 25).

## select top 25th highest expressing genes

gene_metadata D fDataDT(my_giotto_object)

high_expressed_genes D gene_metadata[mean_expr_det > quan-

tile(gene_metadata$mean_expr_det)[4]]$gene_ID

## identify genes that are associated with proximity to other cell types

ICGscoresHighGenes D findInteractionChangedGenes(gobject D my_giotto_object,

selected_genes D high_expressed_genes,

spatial_network_name D ’Delaunay_network’,

cluster_column D ’HMRF_k8_b.20’,

diff_test D ’permutation’,

adjust_method D ’fdr’,

nr_permutations D 2000,

do_parallel D TRUE, cores D 4)

## visualize

plotCellProximityGenes(my_giotto_object,

cpgObject D ICGscoresHighGenes,

method D ’dotplot’)

Del Rossi et al.
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Figure 27 Depiction of a representative pair of identified ICGs from one-way analysis.

Now we can visualize a selected subset of our identi!ed ICGs (Fig. 26).

## filter genes

ICGscoresFilt D filterInteractionChangedGenes(ICGscoresHighGenes)

## visualize subset of interaction changed genes (ICGs)

ICGscoresFilt$CPGscores[type_int D D ’hetero’][cell_type D D ’3’]

ICG_genes D c(’LAMC2’, ’CXCL10’, ’PIP’, ’WIPI2’, ’PI16’)

ICG_genes_types D c(’7’, ’7’, ’2’, ’2’, ’5’)

names(ICG_genes) D ICG_genes_types

plotInteractionChangedGenes(gobject D my_giotto_object,

cpgObject D ICGscoresHighGenes,

source_type D ’3’,

source_markers D c(’CD74’, ’HLA-B’, ’HLA-DRA’),

ICG_genes D ICG_genes)

We can now also combine the ICGs and identify pairs of ICG in two interaction
cell types. This provides a straightforward and unbiased manner in which to asso-
ciate ICG in two directions. Here we highlight two examples. In the !rst example
(Fig. 27), when HMRF domain 2 and 6 are in proximity the gene AKR1A1 is upreg-
ulated in domain 6 while SERPINB3 is upregulated in domain 2.
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Figure 28 Depiction of a representative pair of identified ICGs from two-way analysis.

combo_ICGs D combineInteractionChangedGenes(cpgObject D ICGscoresHighGenes)

combo_ICGs$combCPGscores[type_int D D ’hetero’ & direction D D ’both_up’][p.adj_1 <

0.01 & p.adj_2 < 0.01 & abs(log2fc_1) > 1 & abs(log2fc_2) > 1]

# visualize

plotCombineInteractionChangedGenes(gobject D my_giotto_object,

combCpgObject D combo_ICGs,

selected_interactions D ’2–6’,

selected_gene_to_gene D c(’AKR1A1–SERPINB3’))

In a second example (Fig. 28) between interacting cells in HMRF domain 1 and 5,
the gene changes are in opposite directions. Here OLA1 is upregulated in cells within
domain 1 and MUCL1 is downregulated in cells within domain 5.

plotCombineInteractionChangedGenes(gobject D my_giotto_object,

combCpgObject D combo_ICGs,

selected_interactions D ’1–5’,

selected_gene_to_gene D c(’MUCL1–OLA1’))

3. Ligand-receptor signaling.
We can also analyze ligand-receptor signaling in the context of our spatial domain
data, as identi!ed in Basic Protocol 6. The ligand-receptor dataset has already been
imported and can be loaded here.

LR_data D data.table::fread(file D paste0(data_directory, ’/’, ’PairsLigRec.txt’))

LR_data[, ligand_det :D ifelse(HPMR.Ligand %in% my_giotto_object@gene_ID, T, F)]

LR_data[, receptor_det :D ifelse(HPMR.Receptor %in% my_giotto_object@gene_ID, T, F)]

LR_data_det D LR_data[ligand_det D D T & receptor_det D D T & Pair.Source D D ’known’]

select_ligands D LR_data_det$HPMR.Ligand

select_receptors D LR_data_det$HPMR.Receptor

spatial_all_scores D spatCellCellcom(my_giotto_object,

spatial_network_name D ’Delaunay_network’,

cluster_column D ’HMRF_k8_b.20’,

random_iter D 1000,

gene_set_1 D select_ligands,

gene_set_2 D select_receptors,

adjust_method D ’fdr’,

do_parallel D T,

cores D 4,

verbose D ’none’)

Del Rossi et al.
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Figure 29 Ligand-receptor pairs (y-axis) that are detected by Giotto to exhibit differential cell-cell
communication scores due to spatial cell-cell interactions (x-axis). The size of the dot is correlated
with the adjusted p-value and the color indicates increased (red) or decreased (blue) activity.

Now we can select our top ligand-receptor pairs and visualize the results in a dotplot
(Fig. 29). This analysis illustrates how ligand-receptors pairs are used more or less
frequently when cells from neighboring domains are found in proximity.

selected_spat D spatial_all_scores[p.adj <D 0.1 & abs(log2fc) > 0.5 & lig_nr >D 3 &

rec_nr >D 3]

data.table::setorder(selected_spat, -PI)

top_LR_ints D unique(selected_spat[order(-abs(PI))]$LR_comb)[1:33]

top_LR_cell_ints D unique(selected_spat[order(-abs(PI))]$LR_cell_comb)[1:33]

plotCCcomDotplot(gobject D my_giotto_object,

comScores D spatial_all_scores,

selected_LR D top_LR_ints,

selected_cell_LR D top_LR_cell_ints,

cluster_on D ’PI’)

SUPPORT
PROTOCOL 2

ASSEMBLY OF A REGISTERED 3D GIOTTO OBJECT FROM 2D SLICES

Many spatial transcriptomic methods can only generate 2D datasets, but it is possible to
z-stack these 2D slices into a 3D dataset. In this support protocol, we will demonstrate
how to combine 2D spatial transcriptomic data together into a single 3D dataset usingDel Rossi et al.
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Figure 30 Stacking unregistered 2D datasets results in a 3D dataset where the tissue regions
are out of sync with each other. Registering the data prior to combining resolves this issue.

Figure 31 Overview of the image registration and 3D dataset assembly process.

Giotto and Fiji. 2D slices make spatial sense within their own planes, but when stacking
them together, the data are often out of sync with each other due to differences in tissue
placement on or across capture regions which, rather than the tissues, de!ne the spatial
frame of reference of spatial transcriptomic data. Thus, in order to faithfully represent
the 3D information, it is necessary to !rst align all the 2D slices. Since it is dif!cult to
use gene expression data alone as the ground truth for tissue alignment, image registra-
tion is performed based on the paired staining images (Fig. 30). Using Fiji, this proto-
col performs “rigid” registration, meaning that the only transformations allowed when
the program seeks for a good alignment across images are rotations and x and y shifts.
This method is fully technology-agnostic, and the resulting rotations and translations per-
formed on the images can then be mapped back onto the spatial locations in Giotto to
bring them into sync (Fig. 31).

This protocol will begin by using Fiji to perform image registration based on the 3 slices
of spatial data from Patient 2 of the spatial transcriptomic dataset (Ji et al., 2020). The
.xml transforms registration output will then be used in Giotto to create the 3D dataset.

Necessary Resources

See Basic Protocol 1
Del Rossi et al.
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Figure 32 Image registration settings for the Register Virtual Stack Slices plugin in Fiji.

Rigid image registration
1. Image preparation:

Image registration is done in Fiji (version 2.3.0 C /1.53mC ) to !nd the necessary
spatial transformations before moving to Giotto. The !rst step is to scale down the
staining image, if necessary, in order to both speed up the registration process and
make it less RAM intensive. Image dimensions scaled down to around 2000 × 2000px
to 4000 × 4000px are recommended. If image scaling is desired, all images must be
scaled in exactly the same way while keeping the aspect ratio the same. The scaling
factor used must also be kept note of.

To demonstrate functionality, in this example a scale factor of 0.25 was performed on
all three images of this dataset and these can be found in the quarter_size_images
subdirectory of the imgReg folder in the working directory after unzipping it.

The outputs for image registration should be placed in their own folders. Empty
folders for the registered images and the spatial transformation .xml !les are
aligned_images and transforms, respectively, also in the unzipped imgReg folder.
There is an additional folder called exampleXMLS in the transforms folder that
contains example .xml !les for this dataset in case the reader would like to skip this
portion of the protocol.

2. Image registration:

In Fiji, go to Plugins → Registration → Register Virtual Stack Slices (Fig. 32).
Find the directories for the source (quarter_size_images) and output (aligned_images)
folders. Ensure that feature extraction is set to Similarity and that the registration
model is set to Rigid. Also, ensure that Save transforms is checked.

Upon pressing OK, a new window will appear asking for a directory in which to save
the .xml transform !les. Select the prepared folder (transforms) (Fig. 33).

Next, a new window will appear asking for the target !le to which all other images
will be registered. Navigate to the image of a section that has tissue representative of
most of the other images and is as close to the middle of the stack as possible and
open it as the target !le. In this example, all images will be aligned according to the
image for the patient 2 rep2 sample (Fig. 34).

Another window labeled Feature extraction will then open as part of the advanced
options checked earlier. Click OK on these settings.

Registration will then proceed, followed by the output directory being populated with
the registered image and then updated once as the software performs a second pass
to increase image bounds so that all images line up with each other afterwards. The
image transformations performed will all be recorded in TrakEM2 format in .xml
!les that will appear in the transforms folder. If registration does not succeed, see the
troubleshooting section.Del Rossi et al.
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Figure 33 Register Virtual Stack Slices save directory prompt window.

Figure 34 Register Virtual Stack Slices registration target selection prompt window.

Figure 35 Fiji measuring tool can be used to measure pixel distances to determine a micron to
pixel scaling factor. This is needed for accurate z-axis spacing for the 3D dataset.

3. Determine micron to pixel scaling factor.

This process is different depending on the dataset due to differences in spatial tran-
scriptomic methods and image magni!cations, and currently can only be done man-
ually by measuring pixel distances between landmarks with known real-world dis-
tances. This can be done using Fiji by drawing a line, after which the distance will
appear in the status bar (Fig. 35).

Pressing “M” on the keyboard will also save the values into a table.

4. Aligning 2D slices.

The remaining steps return to R and Giotto. Del Rossi et al.
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5. Loading spatial expression and registration data:

First, ensure that transform .xml !les were outputted to the transforms folder. If
the registration step was skipped, then please run the commented-out code to set
xmlpaths by removing the preceding hash mark.

# Get filepaths

exprpaths <- list(paste0(data_directory, "/P2_1_expression.csv"),

paste0(data_directory, "/P2_2_expression.csv"),

paste0(data_directory, "/P2_3_expression.csv"))

spatpaths <- list(paste0(data_directory, "/P2_1_spatial_locs.csv"),

paste0(data_directory, "/P2_2_spatial_locs.csv"),

paste0(data_directory, "/P2_3_spatial_locs.csv"))

xmlpaths <- list(paste0(data_directory, "/imgReg/transforms/P2_1_0.25.xml"),

paste0(data_directory, "/imgReg/transforms/P2_2_0.25.xml"),

paste0(data_directory, "/imgReg/transforms/P2_3_0.25.xml"))

# Alternatively, use the given example .xml files by setting the following path:

# xmlpaths <-

list.files(paste0(data_directory, "/imgReg/transforms/exampleXMLs"), full.names D TRUE)

# Read in data

xmls <- lapply(xmlpaths, readChar, nchar D 1000)

spatlocs <- lapply(spatpaths, read.csv)

exprCounts <- lapply(exprpaths, Giotto::readExprMatrix)

6. Setting z-axis spacing:

For this dataset, each section was taken serially with a thickness of 10 microns. This
value of 10 microns will then be multiplied by the ratio of microns to pixels which
was calculated to be 1.8.

z_vals <- c(0,10,20)

z_vals <- z_vals * 1.8

7. Creating 3D Giotto object:

A Giotto object with the spatial locations of all slices registered to each other is then
generated. Required inputs, in order supplied in the example, are the list of expression
count matrices, the list of unregistered spatial locations, the names of the columns in
those spatial location matrices holding x and y coordinate values, the scaling factor
of images used in image registration relative to spatial locations, the list of transfor-
mation .xml !les from image registration, and a vector of z values to be used.

Note that all data provided in lists and in the vector of z values must be in the same
order by slice of origin.

my_giotto_object_3D <- createRegZStackGobject(expression_list D exprCounts,

spatlocs_list D spatlocs,

xvals D "pixel_x",

yvals D "pixel_y",

scalefactor D 0.25,

transformXML D xmls,

z_vals D z_vals)

Del Rossi et al.
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Figure 36 Visualization of the spatial locations of the final 3D Giotto object. (A) axis_scale D
"cube"; (B) axis_scale D "real".

8. Visualizing 3D data:

The 3D plot shows that all the slices’ spatial locations are now aligned together. The
axis_scale argument takes either cube or real as input. cube displays the spatial lo-
cations with all axes scaled to the same length, making it easy to see any issues with
alignment. real plots all axes to actual scale (Fig. 36).

spatPlot3D(gobject D my_giotto_object_3D,

axis_scale D "cube",

point_size D 5)

spatPlot3D(gobject D my_giotto_object_3D,

axis_scale D "real",

point_size D 5)

The 3D Giotto object can then be analyzed in the same ways as previously described.
Loading in Leiden cluster annotations, (steps shown in the markdown) we can see
that the clusters are aligned across 2D slices (Fig. 37).

# Visualize 3D data with leiden clusters

my_colors D c("#9442f2","#b6d326","#fa002a","#fa00d4","#013bb5",

"#666666","#017fd6","#50cfff","#cf8cff","#01d671")

cellMetadata_3D <- readRDS(file D paste0(data_directory, "/imgReg/cellMetadata3D.rds"))

my_giotto_object_3D <- addCellMetadata(gobject D my_giotto_object_3D,

new_metadata D cellMetadata_3D,

by_column D "cell_ID")

spatPlot3D(gobject D my_giotto_object_3D,

axis_scale D "cube",

point_size D 5,

cell_color_code D my_colors,

cell_color D "leiden_clus")

spatPlot2D(gobject D my_giotto_object_3D,

point_size D 3.5,

coord_fix_ratio D 1,

cell_color_code D my_colors,

cell_color D "leiden_clus")

Del Rossi et al.
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Figure 37 Giotto objects with 3D data can be analyzed in the same way that 2D datasets are.
They can also be plotted in either (A) 3D or (B) 2D depending on whether the 2D or 3D plotting
command is used.

Table 1 Troubleshooting

Issue Fix

Error in inti (j, n D x@Dim[2], dn[[2]], give.dn D
FALSE):
invalid character indexing (when subsetting and
reordering the expression matrix according to the
spatial locations

Ensure that every spatial location has a
corresponding set of expression data.

Error:
cannot coerce class "structure ("dgCMatrix",
package D "Matrix")" to a data.frame

Load the Matrix library !rst by running library
(Matrix)

Fiji returns:
mpicbg.models.NotEnoughDataPointsException:
0 data points are not enough to estimate a 2d rigid
model, at least 2 data points required…
Not all images were registered and/or no .xml
transform !les were written

After making sure that the image is not larger than
roughly 4000 × 4000px, in the Feature
extraction window, try increasing the feature
descriptor size in increments of 1.

Fiji returns:
Could not open !le after registration completes
Registered images show up in output folder, but
preview stack only shows a subset of images
No .xml !les were written

Run Fiji as administrator (need to have admin
rights on the machine)
PC: Close Fiji, then right click the Fiji icon → run
as administrator
MacOS: in terminal, run this line:
sudo /Applications/Fiji.app/
Contents/MacOS/ImageJ-macosx
(or wherever else Fiji is installed)
If still an issue, try the above !x of going to
advanced options and increasing feature descriptor
size in increments of 1.

Fiji does not display the registration settings
screen and becomes unresponsive.
May happen after another registration completes

Force quit then restart Fiji
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COMMENTARY

Troubleshooting
Table 1 summarizes a few common issues

and the recommended solutions.
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