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Spatial transcriptomic technologies have been developed rapidly in recent
years. The addition of spatial context to expression data holds the potential to
revolutionize many !elds in biology. However, the lack of computational tools
remains a bottleneck that is preventing the broader utilization of these tech-
nologies. Recently, we have developed Giotto as a comprehensive, generally
applicable, and user-friendly toolbox for spatial transcriptomic data analysis
and visualization. Giotto implements a rich set of algorithms to enable robust
spatial data analysis. To help users get familiar with the Giotto environment and
apply it effectively in analyzing new datasets, we will describe the detailed pro-
tocols for applying Giotto without any advanced programming skills. © 2022
Wiley Periodicals LLC.
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INTRODUCTION

Multicellular organisms consist of diverse cell types that act in concert to maintain the
structure and function of tissues and organs. The anatomic structure of a tissue or organ
is highly organized and often conserved across species, suggesting that the spatial distri-
bution of cell types may be essential for the maintenance of tissue functions. Disruption
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of the tissue microenvironment has been observed in numerous human diseases, and its
role in etiology is beginning to be recognized (Bettcher, Tansey, Dorothée, & Heneka,
2021; Binnewies et al., 2018; Buckley, Ospelt, Gay, & Midwood, 2021; Hanahan &
Weinberg, 2011). Recently, new technologies have rapidly emerged to dissect cellular
composition while preserving spatial information. Collectively, these technologies are
referred to as spatial transcriptomics, and have been highlighted as the Method of the
Year in 2020 by Nature Methods (Marx, 2021). Spatial transcriptomics has provided an
unprecedented opportunity to dissect tissue microenvironment, elucidate cell-cell inter-
action mechanisms, and characterize heterogeneity among disease patients (Lewis et al.,
2021; Longo, Guo, Ji, & Khavari, 2021; Rao, Barkley, França, & Yanai, 2021). They
have also been utilized by a number of consortia to create spatially resolved cell atlases
in health and disease (Regev et al., 2017; HuBMAP Consortium, 2019; BRAIN Initiative
Cell Census Network (BICCN), 2021; Rozenblatt-Rosen et al., 2020).

Spatial transcriptomic analysis presents new challenges that require the development
of novel computational tools (Dries et al., 2021a). On the one hand, new methods are
needed to address speci!c tasks, such as spatial pattern detection and cell-cell inter-
action identi!cation. On the other hand, integrative tools are also needed to facilitate
end-to-end data analysis by using state-of-the-art methods. To this end, we have de-
veloped a powerful software package, called Giotto, for comprehensive analysis and
interactive visualization of spatial transcriptomic data (Dries et al., 2021b). In this pa-
per, we describe the detailed protocols for using Giotto in various tasks, including (1)
getting Giotto set up for use; (2) pre-processing; (3) clustering and cell-type identi!ca-
tion; (4) cell-type enrichment and deconvolution analyses; (5) spatial structure analysis
tools; (6) spatial domain detection by using a hidden Markov random !eld model; (7)
spatial proximity associated cell-cell interactions; and (8) assembly of a registered 3D
Giotto object from 2D slices. An accompanying github repository, including all the doc-
umented code used in this article and expanded R Markdown scripts, can also be found at
https://github.com/drieslab/giotto_current_protocols. More information, tutorials and
example datasets can be found on our Giotto website at https:// rubd.github.io/Giotto_
site/ .

DATA

Three main data types can be provided to the Giotto analysis pipeline. Two of these data
types, a count matrix representing gene expression values and coordinates for the spatial
locations, are required to run spatial transcriptomic analysis. This is suf!cient to run all
downstream analyses. Giotto can also be used to analyze scRNA-seq data, where only a
gene expression matrix is needed, and the spatial location information is automatically
!lled by dummy values. In addition, a raw or processed image of the spatially pro!led
tissue can be provided. This image can then be used as a background and overlaid with
the results obtained from the various spatial analyses to help interpret the results within
the original tissue organization.

Expression count matrices should be provided to Giotto as shown in Figure 1, with genes
as the row names and the spatial (cell) IDs as the column names. Spatial location data ma-
trices (optional if running scRNA-seq data) should be provided as shown, with plotting
coordinate x values in the !rst column, y values in the second, and z values (optional) in
the third. An additional column for cell IDs can also be included. Of note, the expression
(column-wise) and spatial data (row-wise) must be given in the same order, as demon-
strated by how the spatial cell_ID column matches the column names of the expression
matrix.

In addition, images can be provided as an additional input that can provide helpful visual
context when overlaid with information obtained from the spatial transcriptomic data.Del Rossi et al.
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Figure 1 An example of the input matrices for Giotto. (A) Subset of dataset used in this analysis
demonstrating the format necessary for the expression matrix. (B) Subset of dataset used in this
analysis demonstrating the format necessary for the spatial locations matrix.

Any type of image (H&E, IF, FISH, etc.) can be added and individually selected by name
with each spatial plotting command in Giotto. They can be provided in any raster-based
format, including .jpg, .png, or .tiff !les.

To ensure that images and spatial locations are properly aligned, it is typically required to
multiply the y-values from the spatial locations by -1 as we did for this example (Fig. 1B).
This is due to differences between the coordinate system of an image and an R plotting
canvas, where the (0,0) origin is typically top-left and bottom-left, respectively.

PROTOCOLS

To increase readability, names of commands, functions or parameters are formatted
with a different font, e.g., exampleFunction. The following protocols are all run
in R/Rstudio, unless stated otherwise. Of note, additional questions for help or issues
can be posted on our github issues page (https://github.com/RubD/Giotto/ issues), and
instructions on how to submit a GitHub issue for Giotto can be found at https:// rubd.
github.io/Giotto_site/articles/github_issues.html.

BASIC
PROTOCOL 1

GETTING GIOTTO SET UP FOR USE

In this protocol, we explain the system and environment prerequisites necessary for
Giotto installation, as well as the creation of a Giotto object. Brie"y, Giotto is an R
package that can be downloaded and easily installed on most commonly used operat-
ing systems. The core of Giotto is an S4 object class (giotto). The created giotto
objects facilitate the storage and analysis of spatial transcriptomic data. A giotto ob-
ject contains multiple slots that can be broadly organized into three categories (Fig. 2).
The !rst category includes slots that store data input and general metadata, containing
expression matrices (gene by cell) and corresponding data frames with information about
the cells and genes. The second category of slots relates to where the cells are in physical
space and what spatial neighborhoods they form. The images slot containing raw im-
age data used to overlay outputs for concurrent visualization can also be found here. The
third category is concerned with where the cells are in the expression space and analyses
and abstract visualizations built thereupon.

Necessary Resources
Hardware

The minimum requirements to run the different protocols are:

4-core Intel or AMD processor (or equivalent)
4 GB RAM (8C recommended)
250 GB free disk space

Del Rossi et al.
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Figure 2 Schematic of the Giotto object and its core components that are used to create a spatial analysis
framework.

Operating systems: Windows/Linux/Mac

Mac users will need to have a working version of Xcode, which can be installed
with the following command in the terminal:

> xcode-select –install

Software

R (version ≥3.5.1); download and installation instructions:
https://www.r-project.org/

Rstudio; download and installation instructions:
https://www.rstudio.com/products/ rstudio/download/ . Rstudio is an integrated
development environment (IDE) for R and it can be launched like any other
application on your machine. We recommend this tool for novice R users.

Python (version ≥3.6); download and installation instructions:
https://www.python.org/downloads/

Fiji (version ≥ 2.3.0/1.53 m); download and installation instructions
https:// imagej.net/ software/!ji/downloads. Only required for supplemental
protocol.

Files

The following protocols use data from Ji et al. (2020), found under Gene
Expression Omnibus (GEO): GSE144240. This study aims to characterize the
cell type composition and architecture of human cutaneous squamous cell
carcinoma and utilizes a number of high-throughput omics technologies,Del Rossi et al.
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including single-cell RNA sequencing (scRNA-seq), whole exome sequencing
(WES), and methods to detect transcripts or proteins in a spatially aware
manner. Brie"y, cancerous and normal skin samples were collected from 10
patients for scRNA-seq and prepared using the 10X Genomics Chromium
platform. In parallel, select tissue areas were also used to create WES and spatial
data, more speci!cally Spatial Transcriptomics (ST) and 10× Visium were
applied on fresh-frozen subsets and multiplexed ion beam imaging (MIBI) was
performed on formalin-!xed tissues. For the purpose of this protocol paper, we
only used scRNA-seq (both normal and tumor) and ST data from slices of
patient 2. Furthermore, slice 2 was used for all 2D-based analyses and
visualizations, and this section is 10 m m thick with individual spatial spots that
are 110 m m in diameter with a center-to-center distance of 150 m m. For the
3D-based analysis, we stacked all three spatial transcriptomic slices of patient 2.

1. Installation.

Giotto can be installed directly from GitHub (https://github.com/RubD/Giotto) using
the following code. After installation, it is necessary to load the package in R.

install.packages("remotes")

remotes::install_github("RubD/Giotto")

library(Giotto)

2. Environment setup.

Giotto requires the installation of several Python packages to run all of the avail-
able analyses. When you run the command installGiottoEnvironment(),
a miniconda environment that contains all the required python modules will be
installed.

The following is a demonstration of how to install a miniconda environment with
Giotto:

installGiottoEnvironment()

This command only needs to be run once, and in subsequent R sessions, Giotto will
automatically detect the installed Giotto miniconda environment and use that unless
instructed otherwise. For example, if you always choose to direct Giotto to your own
preferred python path, you will need to manually install all the necessary packages
with pip or anaconda:

pandas (1.1.5)
python-igraph (0.9.6)
networkx (2.6.3)
python-louvain (0.15)
leidenalg (0.8.7)
scikit-learn (0.24.2)
sm!shHmrf.

Due to differences in python module versions between your manual python envi-
ronment and the Giotto miniconda environment, slight differences in the subsequent
downstream spatial analyses might be observed. We have provided the current version
numbers above, but in the event that anything has been updated, the exact module ver-
sions can be found on the help page of installGiottoEnvironment() using
the command help("installGiottoEnvironment"). Del Rossi et al.
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3. Downloading dataset.

Once you have installed the Giotto package, you can simply download the data di-
rectly to your own preferred directory using the getSpatialDataset() function
as illustrated below. The datasets can also be found on our GitHub (https://github.
com/RubD/spatial-datasets/ tree/master/data/2020_ST_SCC). This command is a
convenience function that allows users to directly download a number of different
datasets, obtained from various technologies, to test and learn to work with the dif-
ferent Giotto work"ows. Here we assigned our data directory path to the variable
data_dir. All necessary !les can be directly accessed from that location as illus-
trated in our example code.

data_directory <- "∼/ST_SCC_data"

save_directory <- "∼/save_dir"

# Download data

getSpatialDataset(dataset D "ST_SCC", directory D data_directory, method D "wget")

4. Creating a Giotto object.

Before creating a Giotto object, we can create speci!c instructions for our Giotto anal-
ysis work"ow. Although this step is optional, it makes it possible to specify the default
behavior of the Giotto pipeline, including which python path to use and how !gures
will be saved and displayed automatically. For example, by setting both show_plot
and return_plot to FALSE and only directly saving the plots to your designated
directory by setting save_plot to TRUE, we can eliminate long plotting times
caused by large spatial datasets.

my_instructions <- createGiottoInstructions(save_plot D TRUE,

show_plot D TRUE,

return_plot D FALSE,

save_dir D save_directory)

After your instructions are set up, you can proceed to creating your Giotto object. The
only necessary input is a set of feature data, such as gene expression data, and spatial
locations. An additional image may be provided as shown in the next step. Of note,
scRNA-seq data can also be processed and analyzed with Giotto, in which case you
only need to provide the feature data.

my_giotto_object <- createGiottoObject(raw_exprsD paste0(data_directory,

"/P2_2_expression.csv"),

spatial_locsD paste0(data_directory,

"/P2_2_spatial_locs.csv"),

instructionsD my_instructions)

Giotto has built-in functions to easily access slots such as cell or gene metadata with
the functions pDataDT() and fDataDT(), respectively.

pDataDT(my_giotto_object)

fDataDT(my_giotto_object)

If there are one or multiple images to associate with spatial data, then you can load
them in as a giottoImage object. For purposes of initializing the alignment of im-
age to spatial data, you can point to the Giotto object which already contains your spa-
tial locations with the gobject argument. GiottoImage(s) are then assigned
to the Giotto object as a list.Del Rossi et al.
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Figure 3 Spatial location data overlaid on a staining image of tissue (A) before and (B) after the Giotto image
is scaled and updated.

my_giotto_image <- createGiottoImage(gobject D my_giotto_object,

mg_object D paste0(data_directory,

"/P2_2_0.0625.jpg"))

my_giotto_object <- addGiottoImage(gobject D my_giotto_object,

images D list(my_giotto_image))

If both expression and image data are available, it is often informative to overlay the
information together in data visualization.

spatPlot2D(gobject D my_giotto_object,

show_image D TRUE,

point_alpha D 0.5)

However, as indicated in Figure 3A, the images and expression data may not align cor-
rectly without adjustment. Giotto provides the function updateGiottoImage()
for alignment adjustment. By default, images are stretched to cover as much space as
the spatial locations do, and this is often not enough since images tend to be larger
than capture regions. Adjustments increase the scaling of the picture in terms of dis-
tance away from the largest or smallest x or y spatial location value (Fig. 4). For
datasets obtained through the commercially available Visium kit users can directly
use the function create createGiottoVisiumObject(), which will automati-
cally extract all necessary information from the visium folder and rescale the image
according to the Visium provided scaling factors.

Giotto also provides the functionality to automatically align the image properly if
the user knows the scale factor of the image relative to the spatial locations. This
will be demonstrated as an alternative in the associated R Markdown. For the pur-
poses of this paper, we show how to adjust and scale the image manually with
Giotto. The following code can be used to view the image after proper alignment
(Fig. 3B).

Del Rossi et al.
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Figure 4 Spatial location data portrayed as gray spots are overlaid on a staining image of the
tissue. By default, the image is stretched to cover as much space as the spatial extents, but if this
is inaccurate, adjustment values can be used to adjust where the image bounds (in teal) should
be.

my_giotto_object <- updateGiottoImage(gobject D my_giotto_object,

image_name D "image",

xmax_adj D 4857.2,

xmin_adj D 3441.1,

ymax_adj D 2146.7,

ymin_adj D 5302.5)

spatPlot2D(gobject D my_giotto_object,

show_image D TRUE,

point_alpha D 0.5)

BASIC
PROTOCOL 2

PRE-PROCESSING

The !rst pre-processing step we will discuss is !ltering. Filtering input expression data
is achieved through the removal of low-quality cells and/or lowly-expressed genes, and
is necessary to reduce data noise. Giotto implements gene !ltering through expression
thresholds and cell !ltering based on the number of cells a given gene is detected in and
the total number of genes detected per cell.

Following the !ltering step, Giotto normalizes the !ltered data for sequencing depth
so that the results can be appropriately compared. Giotto offers a standard, but adapt-
able, method of normalization, which involves library size normalization and scaling,
log transformation, and z-scoring by genes and/or cells. In addition, Giotto implements
the normalization approach used in the osmFISH paper (Codeluppi et al., 2018). Next,
gene and cell statistics can be generated. This may be useful for further exploratory data
analysis (EDA) in combination with additional biological or study design information.
For example, we can account for and reduce experimental artifacts or known technical
factors, such as batch effects or the percentage of mitochondrial gene content within each
cell.

Necessary Resources

See Basic Protocol 1Del Rossi et al.
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Figure 5 Effect of different choices of expression filtration combinations. The legend on the right-
hand side denotes the minimum expression threshold, while each point on the plot represents the
combinations of the minimum number of cells a gene is detected in and the minimum number of
genes a cell detects. The x-axis demonstrates the number of cells that would be removed, while
the y-axis demonstrates the number of genes that would be removed.

1. Filtering.

After creating your Giotto object, you can !lter your expression data in several ways
including expression threshold, minimum number of cells a gene is detected in, and
minimum number of genes expressed per cell. To assess how many cells/spots or
genes should be !ltered out, the following function will create a visualization (Fig. 5)
demonstrating the number of observations that may be lost based on various !ltering
combinations.

filterCombinations(gobject D my_giotto_object,

expression_thresholds D c(1, 2),

gene_det_in_min_cells D c(2, 5, 10),

min_det_genes_per_cell D c(100, 200, 500))

Based on the above plot as well as printed output, you can select the appropriate
combination and apply this choice to your Giotto object. The following function will
!lter out based on your selected parameters.

my_giotto_object <- filterGiotto(gobject D my_giotto_object,

expression_threshold D 2,

gene_det_in_min_cells D 2,

min_det_genes_per_cell D 100)

2. Normalization.

Following data !ltration, we will apply our normalization steps. Out of the normal-
ization options described in the introduction (standard and the method displayed by Del Rossi et al.
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Figure 6 Summary statistics for gene metadata. (A) A subset of the gene metadata data frame contained in
the Giotto object, which consists of the following: number of cells in which the gene is expressed, percentage of
cells that express the gene, total gene expression, average gene expression, and average expression detected.
(B) A subset of the cell metadata data frame contained in the Giotto object, which consists of the following:
number of genes expressed in each cell, percentage of genes, and total gene expression per cell.

Codeluppi et al., 2018), we will use a standard method of normalization for this ex-
ample. You can also choose whether you will scale genes or cells !rst, but the default,
and the method we will use, is to scale genes !rst.

my_giotto_object <- normalizeGiotto(gobject D my_giotto_object,

norm_methods D "standard",

scalefactor D 6000,

scale_order D "first_genes")

3. Statistics.

You can also view some summary statistics of your data. Giotto offers the following
insights.

Gene statistics:

nr_cells: number of cells the gene is detected in
per_cells: percentage of cells the gene is detected in
total_expr: total sum of gene expression in all cells
mean_expr: average gene expression in all cells
mean_expr_det: average gene expression in cells with detectable levels of the

gene.

Cell statistics:

nr_genes: how many genes are detected in the cell
perc_genes: percentage of genes detected per cell
total_expr: total sum of gene expression per cell.

my_giotto_object <- addStatistics(gobject D my_giotto_object)

We can use the following code to view the summary statistics for gene metadata
(Fig. 6A) and cell metadata (Fig. 6B), respectively.

# view gene and cell stats respectively

head(fDataDT(my_giotto_object))

head(pDataDT(my_giotto_object))

To account for batch effects or technological covariates, you can use the function
adjustGiottoMatrix().Del Rossi et al.
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Figure 7 Visualization/exploration of potential technical confounding factors. (A) Spatial plot representing
number of genes per spot. (B) Spatial plot representing mitochondrial percentage per spot.

For example, we can calculate the percentage of mitochondrial content per spot by
using the following code.

mitochondrial_genes D grep(’MT-’, my_giotto_object@gene_ID, value D T)

my_giotto_object D addGenesPerc(gobject D my_giotto_object,

genes D mitochondrial_genes, vector_name D ’mito’)

We can also visualize the number of genes per spot (Fig. 7A) as well as the mitochon-
drial percentage per spot (Fig. 7B).

# number of genes

spatPlot2D(gobject D my_giotto_object,

show_image D TRUE,

point_alpha D 1,

point_size D 5,

cell_color D ’nr_genes’, color_as_factor D F)

# mitochondrial content percentage

spatPlot2D(gobject D my_giotto_object,

show_image D TRUE,

point_alpha D 1,

point_size D 5,

cell_color D ’mito’, color_as_factor D F)

To adjust our matrix to account for these technical confounders, we can run the fol-
lowing code. The user can choose which expression slot to update, e.g., the ‘custom’
expression slot, which could then be selected and used in subsequent downstream
analysis by specifying the expression_values parameter.

my_giotto_object <- adjustGiottoMatrix(gobject D my_giotto_object,

covariate_columns D c(’nr_genes’, ’mito’),

update_slot D ’custom’)

Del Rossi et al.
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BASIC
PROTOCOL 3

CLUSTERING AND CELL-TYPE IDENTIFICATION

In this protocol, we will discuss how unsupervised clustering analysis is implemented
in Giotto to identify cell types, and how those results can be utilized in downstream
analyses. Before running a clustering analysis, it is typically advised to perform feature
selection to retain the most informative genes in order to optimize the signal-to-noise
ratio. This can be achieved by calculating highly variable genes (HVGs). Giotto currently
implements two commonly used methods for HVG identi!cation. The default method
uses coef!cients of variation (cov) groups. Genes are grouped into equal-sized bins (with
a default of 20), and a cov for each gene is calculated and converted to a z-score per bin.
Genes that have a z-score above the set threshold (default of 1.5) are considered as highly
variable. The alternate method for identifying HVGs is using a Loess regression model,
which predicts expected cov using log-normalized expression values. Genes that have
signi!cantly higher cov than predicted by the model are considered to be highly variable.

Due to the high dimensionality of spatial transcriptomic data, dimensionality reduction is
a commonly used step to aid data analysis and visualization. Giotto implements a number
of common approaches for dimensionality reduction. The simplest approach is principal
component analysis (PCA), which is a linear projection of the data to directions asso-
ciated with the highest variance, the results of which can be visualized through either a
Scree (“elbow”) plot or a jackstraw plot to determine the number of signi!cant principal
components (Chung, 2020). On the other hand, the linear assumption underlying PCA is
often too restricted and does not represent the full complexity of all cells. To overcome
these limitations, more sophisticated dimensionality-reduction methods have been devel-
oped to account for nonlinearity. Giotto implements two widely used nonlinear methods:
t-distributed stochastic neighbor embedding (t-SNE; van der Maaten & Hinton, 2008)
and Uniform Manifold Approximation and Projection (UMAP; Becht et al., 2018).

Following identi!cation of HVGs and dimensionality reduction, we can begin the clus-
tering process. Giotto implements four commonly used clustering algorithms: k-means,
hierarchical clustering (Traag, Waltman, & van Eck, 2019), Louvain community de-
tection (Blondel, Guillaume, Lambiotte, & Lefebvre, 2008), and Leiden clustering
(Traag et al., 2019). The latter two are graph-based methods and more routinely used
in single-cell and spatial analyses. In order to apply these methods, a shared or k-nearest
neighbor network is created in advance. This can be achieved by using either the pre-
processed expression values or the outcome of dimensionality reduction analysis. For
proper biological interpretation, manual identi!cation is often needed to annotate cell
types based on the clustering results. Sometimes this involves additional processing such
as iterative clustering or merging of similar clusters.

To aid biological interpretation, it is important to identify marker genes that discriminate
between different clusters/cell-types. Giotto implements three established algorithms
to detect differentially expressed genes (DEGs). Scran (Lun, McCarthy, & Marioni,
2016) performs pairwise t-tests between each cluster and then combines and compares
the results to determine which genes are statistically signi!cantly upregulated. MAST
(Finak et al., 2015) implements the hurdle model, which !rst identi!es whether a gene is
expressed, and if so, whether the expression level exceeds a de!ned “hurdle” value. The
Gini-coef!cient method (Jiang, Chen, Pinello, & Yuan, 2016) ranks genes based on the
Gini coef!cient and selects the top genes, adjusted by background removal, as cell-type
speci!c markers.

Necessary Resources

See Basic Protocol 1

Del Rossi et al.
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1. Feature selection.

Following pre-processing, we can start our clustering process with feature selection.
We will use Giotto to calculate and visualize highly variable genes (HVGs). As men-
tioned above, Giotto has two available methods for identifying such genes: coef!cient
of variation (cov) groups and Loess regression. For this demonstration, we will use
the cov groups method (also the default). Following analysis, Giotto displays a plot
demonstrating the distribution of HVGs (Fig. 8).

my_giotto_object <- calculateHVG(gobject D my_giotto_object,

expression_values D "normalized",

method D "cov_groups",

nr_expression_groups D 20,

zscore_threshold D 1.5)

2. Dimensionality reduction.

Following HVG identi!cation, we will run dimensionality reduction. First, we will
run a linear analysis: principal component analysis (PCA). As you can see in the
following code block, we have speci!ed that we will use HVGs for this analysis.

my_giotto_object <- runPCA(gobject D my_giotto_object,

expression_values D "normalized",

genes_to_use D "hvg")

We can now visualize our data (Fig. 9) following dimensionality reduction using the
following code.

plotPCA(gobject D my_giotto_object)

After PCA has been run, we can visualize our results with a Scree plot (Fig. 10) to
identify which principal components to use in downstream analyses. Del Rossi et al.
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Figure 9 Visualization of the principal component analysis results. Each dot represents the
reduced-dimension gene expression pattern associated with a ST data point. The top two dimen-
sions are shown for visualization. The percentage of total variance explained by each dimension
is indicated in the x- and y-axis labels.
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Figure 10 Scree plot demonstrating the amount of explained variance from each principal com-
ponent. The top plot shows the individual percentage of explained variance, while the bottom plot
shows the cumulative percentage of explained variance.Del Rossi et al.
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screePlot(gobject D my_giotto_object,

expression_values D "normalized",

genes_to_use D "hvg",

ncp D 20,

ylim D c(0, 12.5))

To use a less restrained method of dimensionality reduction, we can use a non-linear
analysis. In this example, we will use Uniform Manifold Approximation Projection
(UMAP). These results can be visualized with a scatter plot (Fig. 11).

My_giotto_object <- runUMAP(gobject D my_giotto_object,

dimensions_to_use D 1:10,

n_components D 2)

# to plot our umap:

plotUMAP(my_giotto_object)

Clustering
3. Creating a gene-expression-based nearest network:

Before running a clustering algorithm, we will create a nearest network based on gene
expression similarities. For this example, we will be creating a shared nearest network
(sNN).

my_giotto_object <- createNearestNetwork(gobject D my_giotto_object,

dimensions_to_use D 1:10)

4. Clustering algorithms:

Now we can run our clustering analysis. For this example, we will use Leiden clus-
tering with the sNN that we previously created. Del Rossi et al.
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Figure 12 Clustering results combined with our UMAP plot to show the distinction between the
identified classes across the two dimensions.

my_giotto_object <- doLeidenCluster(gobject D my_giotto_object,

name D "leiden_clus")

To visualize our clustering results (Fig. 12), we can run the following:

plotUMAP(gobject D my_giotto_object,

cell_color D ’leiden_clus’,

point_size D 2)

5. Differentially Expressed Genes (DEGs):

Following clustering, we will interpret our results by !nding differentially expressed
genes (DEGs) between the identi!ed Leiden clusters.

ST_scran_markers_subclusters D findMarkers_one_vs_all(gobject D my_giotto_object,

method D ’scran’,

expression_values D ’normalized’,

cluster_column D ’leiden_clus’)

Now we can use a heatmap (Fig. 13) to visualize the correlation between the top
selected marker genes and the identi!ed Leiden clusters.

ST_top3genes D ST_scran_markers_subclusters[, head(.SD, 3), by D ’cluster’]$genes

plotMetaDataHeatmap(gobject D my_giotto_object,

selected_genes D ST_top3genes,

metadata_cols D c(’leiden_clus’))

This analysis indicates that several clusters show high expression for cell-type-
speci!c genes, such as genes from the Keratin family (e.g., KRT1, KRT2) or major
histocompatibility complex (e.g., HLA-A, HLA-B), which correspond to epithelial
and myeloid cell types, respectively. However, since each spot within a cluster isDel Rossi et al.
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Figure 13 Heatmap demonstrating the correlation between selected marker genes and cell-type.

110 m m in diameter, it is likely that it covers multiple different cell types and that
these results are skewed by the dominant cell type or very highly expressed genes
within one cell type. To overcome this spot or cell annotation obstacle, we will inte-
grate external scRNA-seq information (next Basic Protocol 4) to identify the present
cell types more accurately within each spot at the single-cell level.

BASIC
PROTOCOL 4

CELL-TYPE ENRICHMENT AND DECONVOLUTION ANALYSES

In this protocol, we will provide an overview of Giotto’s functionalities to perform
cell-type enrichment and deconvolution analyses by using external information from a
matching single-cell RNA-seq data. For spatial transcriptomic datasets that do not have
single-cell resolution, cell-type enrichment is a useful step to identify the spatial distri-
bution of various cell types. Giotto implements three commonly used methods for cell-
type enrichment. Parametric Analysis of Gene Set Enrichment (PAGE) calculates the
z-score for gene sets based on fold changes and evaluates statistical signi!cance based
on the normal distribution assumption (Kim & Volsky, 2005). Rank enrichment creates a
ranking-based statistic based on the degree of cell-type speci!city. Hypergeometric en-
richment utilizes the hypergeometric test to evaluate whether the expression levels of
cell-type speci!c signature genes are high at each spatial location. A limitation of cell-
type enrichment analysis is that it does not provide quantitative estimates of the rela-
tive proportion of different cell types at each location. This limitation is addressed by
using cell-type deconvolution analysis. Giotto implements the SpatialDWLS algorithm
(Dong & Yuan, 2021) for cell-type deconvolution, which combines cell-type enrichment
analysis with a dampened weighted least squares (DWLS) algorithm (Tsoucas et al.,
2019) previously developed for bulk RNAseq deconvolution from scRNA-seq data.

Necessary Resources

See Basic Protocol 1

1. Implementation.

To perform spatial cell-type enrichment or deconvolution, we will make use of the
patient-matched scRNA-seq dataset. Here we already provide the processed data,
which consist of the normalized count matrix, the identi!ed cell type vector, and the
associated marker genes per cell type cluster. Del Rossi et al.
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# normalized matrix

normalized_sc_matrix <- readRDS(paste0(data_directory,"/", "normalized_sc_matrix.RDS"))

# cell type vector

cell_type_vector <- readRDS(paste0(data_directory,"/", "cell_type_vector.RDS"))

# list of marker genes

sign_list <- readRDS(paste0(data_directory,"/", "sign_list.RDS"))

Of note, these scRNA-seq results can be reproduced using Giotto or provided from
another single-cell RNA-seq pipeline. More speci!cally, with Giotto this dataset can
be processed by using the same steps as described above: normalization, dimension-
ality reduction, and clustering, in the same way as a spatial transcriptomic dataset,
because none of these steps require spatial information. You would simply add the
expression data !le to the raw_exprs argument in createGiottoObject(),
and dummy spatial locations will be created. For the exact code and more informa-
tion on how this Giotto object was preprocessed, please see the attached R markdown
(https://github.com/drieslab/giotto_current_protocols).

2. Cell-type enrichment.
We can now use the results from our previous clustering analyses to perform cell-type
enrichment. Using our signi!cant differentially expressed genes along with matched
cell types found in the previous step, we can produce a signature matrix, which is
binary.

# list of signature genes

PAGEsignMatrix <- makeSignMatrixPAGE(sign_names D names(sign_list),

sign_list D sign_list)

After creating the above signature matrix, we can run Parametric Analysis of Gene
set Enrichment (PAGE).

my_giotto_object <- runPAGEEnrich(gobject D my_giotto_object,

sign_matrix D PAGEsignMatrix)

After the analysis is complete, we will visualize our results (Fig. 14).

cell_types_subset <- colnames(PAGEsignMatrix)

spatCellPlot(gobject D my_giotto_object,

spat_enr_names D ’PAGE’,

cell_annotation_values D cell_types_subset,

cow_n_col D 3, coord_fix_ratio D 1, point_size D 0.75,

point_shape D "no_border")

3. Spatial cell–type deconvolution.

Next, we will perform spatial cell-type deconvolution using the spatialDWLS al-
gorithm mentioned above. First, we will create a signature matrix speci!c to the
spatialDWLS algorithms. The following function creates the signature matrix by cal-
culating average gene expression for each signature gene in each cell/cell-type.

dwls_signature_matrix <- makeSignMatrixDWLSfromMatrix(matrix D normalized_sc_matrix,

sign_gene D unlist(sign_list),

cell_type_vector D cell_type_vector)

Del Rossi et al.
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Figure 14 PAGE results demonstrating presence of cells at each spatial location.

We will now use the signature matrix we created to run our spatialDWLS analysis.

my_giotto_object <- runDWLSDeconv(gobject D my_giotto_object,

sign_matrix D dwls_signature_matrix)

We have also developed a function to easily visualize the proportions of cell-type
per spot, shown by a spatial dot plot with pie charts at each of the locations. Below,
we show the Giotto image of the sample slice with the spatialDWLS results overlaid
(Fig. 15). Each spot on the plot is a pie chart that represents the percentage of cell-
types.

Del Rossi et al.
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Figure 15 Results from the spatialDWLS analysis. Each pie chart demonstrates the cell-type percent-
age at each spot. (A) Overlaid on the H&E image. (B) Pie charts displayed independently for easier
interpretation.

colors <- c(’darkgrey’, ’hotpink’, ’red’, ’lightblue’, ’green4’,

’yellow’, ’orange’, ’lightgray’, ’magenta’, ’wheat’)

spatDeconvPlot(gobject D my_giotto_object,

radius D 100,

cell_color_code D colors,

show_image D TRUE,

return_plot D TRUE)

BASIC
PROTOCOL 5

SPATIAL STRUCTURE ANALYSIS TOOLS

In this protocol, we will describe how to use Giotto to identify spatial relationships
between cells and genes. Giotto provides a spatial network function based on the spa-
tial proximity of cells. The default setting, a Delaunay network, utilizes a triangula-
tion approach. Alternatively, the user can apply a k-nearest neighbor analysis by spec-
ifying the values of k (D number of neighbors) and search radius (D distance-speci!c
neighborhood). In addition, Giotto also implements a coarse-resolution representation of
the data as a spatial grid, which can be useful for visualizing large-scale spatial struc-
tures. A spatial grid is created by subdividing the image !elds into uniform squares,
with user-de!ned resolution. The average gene expression pro!le within each square is
reported.

Giotto also implements four methods for detecting spatial genes with coherent
gene expression patterns, including Binary Spatial Extraction of Genes (binSpect)
(Dries et al., 2021b), and three previously published methods: SpatialDE (Svensson,
Teichmann, & Stegle, 2018), Transduces (Edsgärd, Johnsson, & Sandberg, 2018), and
SPARK (Sun, Zhu, & Zhou, 2020). Further analysis can be done to group spatial genes
into distinct modules based on spatial co-expression analysis. We found that the metagene
corresponding to each module typically displays enhanced spatial patterns compared to
individual genes.

Necessary Resources

See Basic Protocol 1

Del Rossi et al.
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