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Mesenchymal-epithelial interactions again is thought to be controlled by activating signals originating from the mesenchymal compartment

Hair follicle and acting on hair follicle stem cells. Although many signaling pathways are implicated in hair follicle for-

i)teengg;illa mation and growth, the precise nature, timing, and intersection of these inductive and regulatory signals
Signaling remains elusive. The goal of this review is to summarize our current understanding and to discuss recent
new insights into mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling.
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1. Introduction

_— o . o A hair follicle is the primary unit that produces a single out-
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of functions, including control of body temperature, providing
physical protection, relaying sensory and tactile input, and serving
decorative purposes for social interactions. At least eight different
major hair types can be distinguished in mice [1], and the hair coat
alone contains four separate hair subtypes [2].

All hair follicles have the same basic arrangement, with epithe-
lial progenitor cells at the base giving rise to multiple intermediary
cell lineages that form the hair shaft and its guiding chan-
nel. Epithelial progenitors themselves surround a core cluster of
mesenchymal cells, the dermal papilla (DP), which is thought
to provide signals to coordinate hair growth [3]. The exchange
of molecular cues between epithelial and mesenchymal com-
partments begins during embryogenesis, when hair follicles are
first formed [4]. Remarkably, many of the fundamental signaling
programs required for hair morphogenesis are evolutionarily con-
served across species with different types of skin appendages, such
as feathers and scales [5]. Furthermore, parallels exist between
the mechanisms driving hair, tooth and mammary gland forma-
tion, all of which require mesenchymal-epithelial interactions
[6]. After initial hair follicle formation and a prolonged period
of growth, follicles undergo cycles of destruction and regenera-
tion throughout life [7]. For new hair re-growth, signal exchange
between DP cells and stem/progenitor cells is thought to occur in
a process that is reminiscent of embryonic hair follicle formation
[8]. Many diverse developmental programs require coordinated
mesenchymal-epithelial interactions for completion, and studies
of hair growth provide an exquisite system in which to study the
complexities of this universally important process.

Numerous methods have been used to characterize the inter-
play of signals exchanged between the mesenchymal and epithelial
components during embryonic follicle initiation, postnatal growth
and adult regeneration. An early approach involved tissue recombi-
nation experiments, which determined that dermal signals initiate
follicle formation [9]. Subsequent microdissection and transplan-
tation experiments revealed the inductive and nurturing role
of specialized DP cells [10] and localized multipotent epithelial
stem cells to the follicle bulge [11]. The identification of putative
ligands and receptors involved in mesenchymal-epithelial inter-
actions came from tissue stainings performed since the 1990s, and
more recently from studies systematically assessing gene expres-
sion with the help of genetic fluorescent reporter tools [12-15].
The functional relevance of many ligands has been explored by
bead implantation experiments, complete gene knockout mice and
spontaneous mouse mutants [16]. Most recently, compartment-
specific gene ablation [17] and transgenic overexpression in the
epidermis [18] and bulge stem cells [19] of candidate ligands
and receptors yielded many insights into the requirement and
timing of several signaling pathways for hair morphogenesis. In
this review, we will highlight the basic concepts of hair folli-
cle development, discuss our current understanding of the signal
exchange during this process, and review recent new insights into
the mesenchymal-epithelial interactions driving follicle induction,
growth and regeneration.

2. Overview of hair follicle development, growth and
regeneration

2.1. Hair follicle formation

Classically, the initiation of hair follicle morphogenesis is
described in terms of an ordered series of mesenchymal-epithelial
interactions: a “first signal” emanating from the dermis acts on
an unspecified epidermis, and the formation of morphologically
recognizable hair placodes follows next [4,8]. Several studies
have proposed that mechanisms of lateral inhibition, mediated
by diffusible signals that act within the epidermal compartment,

coordinate the even spacing of these placodes [20-22]. As develop-
ment progresses, stabilized placodes signal to underlying dermal
cells, prompting the formation of dermal condensates or clusters
of DP precursor cells. Finally, these condensates are believed to sig-
nal back to the epithelial compartment to stimulate proliferation
and downgrowth of hair germs [4]. Hair follicle stem cells arise
from epidermal progenitors early on [23] but remain located in the
upper portion of the follicle while supplying rapidly dividing cells
at the tip that allow further downgrowth of the hair peg. As the
epithelial component of the nascent follicle extends deep into the
skin, DP precursor cells remain at the leading edge and are even-
tually engulfed. The dermal component of the mature hair follicle
consists of these DP cells, which remain in the bulb region, and an
adjoining connective tissue sheath that encircles the follicle in its
entirety [4].

The first epithelial placodes appear at embryonic day E14.5, and
eventually develop into primary guard hair follicles. These unique
hairs comprise only 1-5% of the adult mouse coat, and are distin-
guished by their large follicle size and longer shaft length. Primary
placodes have already progressed to form prominent downgrowths
by E16.5, when a second wave of placode formation initiates.
Secondary placodes appear in an even distribution between estab-
lished guard follicles and give rise to awl and auchene hairs. These
contribute to twenty percent of the final adult coat, with smaller
follicles and shorter shaft lengths compared to primary guard hairs.
A third and final wave of placode formation begins at E18.5, giving
rise to zig-zag hairs that represent the vast majority of the adult
coat [2,24].

2.2. Hair growth phase

After initial hair follicle downgrowth, the DP is completely
encased by the lowest part of the hair bulb, although it remains
separated from the epithelial compartment by an enveloping base-
ment membrane. From this position, the DP lies adjacent to a
population of transit-amplifying matrix cells and is thought to emit
signals crucial for regulating their proliferation and differentiation
into the hair shaft and its channel, the inner root sheath [3,16,25].
The hair shaft is in the center and consists of a medulla, cortex
and a cuticle layer. The inner root sheath surrounds the hair shaft
and consists of cuticle, Henley and Huxley layers. It is bordered by
the outer root sheath layer that contains proliferating cells derived
from stem cells in the bulge that feed into the matrix compartment
of the bulb. Melanocytes reside above the DP within the epithe-
lial compartment and provide pigmentation to the hair shaft [26].
Morphogenesis initiated during all three waves continues well into
postnatal development, when hair shafts eventually erupt from the
skin around postnatal day P5 and follicles reach the most advanced
stage of postnatal hair growth by days P13-15 [27].

2.3. Regeneration in the hair growth cycle

Once morphogenesis is complete, follicles are prompted to enter
the first hair cycle by an unknown stimulus, either presumed to
emanate from the DP, or by the absence of continuous growth
stimuli from the DP [7]. Fully formed follicles transition into cata-
gen, a destructive phase characterized by profound apoptosis in the
epithelial compartment of the lower follicle including the matrix
cells and all differentiating layers. The DP remains intact and moves
upwards toward the permanent portion of the hair follicle, which
contains epithelial and melanocyte stem cells in the bulge [28,29].
Most outer root sheath cells survive as well and move upwards to
give rise to a second bulge containing new stem cells and the hair
germ of transit-amplifying cells [30]. Whether this movement of
DP and outer root sheath is due to active migration or a passive
external tug is unknown; regardless, this shift brings the DP into
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close contact with the newly formed bulge and hair germ around
P19 in the first hair cycle. After a short period of rest until P21, the
DP emits signals that induce stem cell activation and proliferation
of hair germ cells that grow down together with the DP to gener-
ate a new complete follicle, resembling the activation of epidermal
stem cells during embryonic hair follicle induction [27,31].

3. Mesenchymal-epithelial interactions during embryonic
hair follicle formation

3.1. Integrative overview of inductive signals and events

The early stages of hair follicle formation involve the tight tem-
poral and spatial regulation of inductive signals in what is thought
to be a sequential process of secreted molecules alternating from
epidermis and dermis [4]. However, efforts to definitively place the
major players such as Wnt, Eda, Fgf, and Bmp in such a cascade are
complicated by the multifactorial nature of these interactions and
the limited time frame in which these exchanges occur (Fig. 1).
Nevertheless, widespread Wnt ligand expression in the epidermis
seems to be most upstream event (Fig. 1A) [32]. Secreted Wnts from
the epidermis are thought to incite similarly broad Wnt signaling
activity within the dermis [32,33], which could in turn drive expres-
sion of the elusive first dermal signal(s) necessary to bring about
hair follicle induction (Fig. 1B) [4,8,16]. Given that the concept of
an inductive dermis was first described many years ago [34,35], it
is remarkable that the underlying molecular mechanisms remain
obscure. However, a singular epithelial signal promoting dermal
cell condensation has not been definitively described either; rather,
a number of molecules are thought to promote condensate forma-
tion and maintenance (discussed below)[4]. Therefore, it is possible
that multiple dermal factors are involved to initiate induction as
well.

Multiple molecular markers such as Wnt10b, Edar, Dkk4 and
K17 pattern the epidermis before any visible signs of hair pla-
codes [36-39]. Similarly, beneath these epidermal “pre-placodes”,
new markers such as Sox2 and Sdc1 identify groups of special-
ized dermal cells [40-42]. At this point in development, parsing
out the precise timing and function of each signaling molecule or
other genes within the greater scheme of mesenchymal-epithelial
interactions becomes difficult because they appear virtually simul-
taneously. As a result, a comprehensive understanding of how all
pathways interact remains incomplete. In the following chapter
we provide a detailed discussion of individual signaling pathways
implicated in morphogenesis, while noting confirmed upstream
and downstream effectors, in an attempt to piece together a model
of how these molecules cooperate during hair induction. These
relationships are further depicted in Fig. 1C.

The factors that specifically promote follicle growth after induc-
tion are slightly more well-defined, since several mutants exist in
which hair follicles are induced, but do not mature. In this regard,
epithelial Shh and Pdgfa, in addition to Fgf and Tgfb2 ligands emit-
ted from the dermis, are central to promoting hair germ formation
(Fig. 1D). A balance of dermal Inhba (activin-3A) secretion and
epidermal follistatin expression is similarly important for early
progression of hair peg growth (Fig. 1E). In the future, advances
in molecular analysis and tools to genetically and/or inducibly
target specific compartments at precise time points during hair
development will be invaluable to define the subtext underlying
epidermal-dermal conversations.

3.2. Inductive signals in embryonic skin

The foundations of modern skin and hair development research
were established many years ago by a “cut-and-paste” approach

(reviewed in [8,9]). These classic experiments employed tis-
sue recombination techniques to explore the functional basis of
mesenchymal-epithelial interactions in skin appendage formation.
Epidermal and dermal layers were separated from early mouse
embryos, and recombined such that dermis from the hairy back
was paired with epidermis from a glabrous region (e.g. hairless foot
pad) - or vice versa - before further culture and assessment of hair
growth [34,35]. The results of these grafts revealed that only der-
mis from hairy mouse backskin induced appendage formation, but
dermis from hairless regions did not, regardless of the origin of
the epidermal tissue. Therefore the inductive potential lies within
the dermis, since the origin of dermal tissue dictated whether skin
appendages developed.

Morphologically recognizable hair placodes in backskin first
appear around E14.5, along with concomitant expression of sig-
naling genes [4,16], and many studies have looked into the roles
of these factors in orchestrating follicle induction and subsequent
hair formation. The functions of canonical Wnt/(3-catenin signal-
ing [43] in epidermis and dermis are especially well-characterized,
and it is clear that this pathway is necessary for hair induction [44].
Mutant mice lacking the transcription factor Lef1, a 3-catenin bind-
ing partner, formed only rudimentary mammary gland, tooth and
hair structures providing early evidence of the central role of Wnt
signaling in skin appendage development [45]. Subsequent studies
confirmed Lef1 activation modulates hair growth: transgenic Lef1
overexpression in epidermis resulted in pelage follicle crowding
and ectopic hair growth within other epithelial tissues [46]. Further
recombination experiments using wild-type and knockout skin
demonstrated a selective requirement for dermal Lef1 expression in
mediating normal hair growth [47]. In direct studies of Wnt signal-
ing, transgenic expression of stabilized 3-catenin in the epidermis
led to de novo hair follicle formation [48], an effect confirmed later
with inducible expression of stable (3-catenin or epidermal dele-
tion of the intracellular $-catenin inhibitor APC [49-51]. Moreover,
early and sustained Wnt activation by epidermal expression of con-
stitutively active (3-catenin resulted in increased dermal fibroblast
proliferation, precocious placode formation and later switched the
entire epidermis to a hair fate or induced excessive, ectopic folli-
cles [52-54]. Correspondingly, selective 3-catenin ablation in the
epidermis entirely prevented epithelial placode formation [33,55].
Forced expression of constitutively activated [3-catenin within the
dermis led to major skin phenotypes as well: overproliferation of
mesenchymal fibroblasts and excessive follicle morphogenesis fol-
lowing precocious dermal condensate establishment [32]. Thus, a
role for Wnt signaling in hair induction is well-established.

Wnt signaling reporter mouse lines have been particularly help-
ful for defining dynamic patterns of Wnt signaling activity during
skin development [33,56-58]. Broad dermal activity driven by
widespread epidermal Wnt ligand secretion (Fig. 1A) [32] precedes
Whnt signaling in epidermal placodes [33]. Ablation of dermal [3-
catenin prior to hair induction precludes the expression of any
placode markers by the epidermis and results in the failure of first
wave hair formation. This suggests that widespread Wnt signaling
in dermal cells regulates the first signal(s) to directly or indirectly
promote hair fate specification in the epidermis (Fig. 1B)[32,59,60].
Concomitant with Wnt signaling activity in pre-placodes, dermal
Wnt activity becomes intensified in underlying dermal conden-
sates. Interestingly, ablating [3-catenin in placodes abrogated this
focused Wnt activity and resulted in a failure of dermal condensate
formation [33,55]. The mechanisms that specifically support der-
mal condensate formation are not yet clear; Shh and Pdgfa signaling
have been proposed in the past, but epidermal Wnt ligands them-
selves might also play a central role [4,61]. Wnt10a and Wnt10b
are upregulated in the placode as morphogenesis begins and might
perpetuate focused Wnt signaling activity within both placode and
condensate [36]. Both Wnt5a, produced by dermal condensates,
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Fig.1. Mesenchymal-epithelial signal exchange during hair follicle induction. Developmental stages (A-E) are represented schematically. (A) Epidermal Wnts activate dermal
Wnt/B-catenin signaling. (B) Unknown dermal signal(s) induce an epidermal response leading to placode formation. (C) Activating (green) and inhibitory (red) signals from
placodes and dermal condensates (DP precursors) consolidate pattern formation through reinforcing placode/DP fate and lateral inhibition on neighboring epidermis. The
network diagram depicts known hierarchies and regulatory connections between signaling pathways (as described in text). (D and E) Signals regulating hair downgrowth at

hair germ and peg stages.

and Wnt10a, turned on in dermis during downgrowth, may con-
tribute as well.

Patterns of Wnt inhibitors in the developing skin are similarly
dynamic and compartment specific, in that Dkk1 is expressed in
the mesenchyme surrounding follicles during the first stages of
downgrowth but is conspicuously absent from the follicle itself
[20,36,62]. When this secreted Wnt inhibitor was misexpressed in
transgenic epidermis, effectively blocking Wnt signaling in both
adjoining epithelial and dermal compartments, the appearance of
physical dermal condensates and downgrowths was completely
abolished [63]. In contrast, Dkk4 is expressed in the placode of
primary wave follicles [38]. It has been proposed to act in a
lateral fashion along with BMP ligands to affect placode spac-
ing (to be discussed further below). Intriguingly, overexpression
of this factor affects only secondary wave hair morphogenesis
while primary guard hairs form normally [64]. The role that
these inhibitors play in compartmental crosstalk remains to be
clarified.

In addition to Wnt, Ectodysplasin (Eda) signaling is similarly
essential for hair follicle induction [6,65]. Eda is a Tnf family
ligand [66] that signals through downstream NFkB transcriptional
activation after binding to the corresponding Ectodysplasin recep-
tor (Edar) [67,68]. The central role Eda signaling plays in skin
appendage morphogenesis was first recognized because mutations
in pathway components lead to human disorders of hair, tooth,
and mammary bud formation [69]. Mouse models of mutated Edar
(downless) or ligand Eda (tabby) have similar phenotypes [70,71],
and are characterized by a sparse coat and absent guard hair for-
mation [65]. During embryonic stages, Eda is widely detectable
throughout the epidermis while Edar expression becomes confined
to early placode structures. As development continues, Eda expres-
sion is progressively confined to the interfollicular epidermis [72].
Because both ligand and receptor are expressed only by the epider-
mis, Edar signaling appears to act as a purely intraepithelial method
of communication, and indeed a number of studies suggest that this
pathway is important for placode stabilization and patterning, but
not necessarily for initial placode induction [33,73].

Recently the timing and hierarchy of Eda signaling with respect
to Wnt/B-catenin signaling was clarified. Using reporter mice for
both B-catenin and NFkB activity revealed that Wnt signaling
precedes Edar activation, and crossing reporters with knockouts
confirmed that Wnt signaling could be activated in the absence of
Eda[33]. Conversely, inhibiting Wnt precludes Edar expression and
NFkB activation, definitively placing Edar signaling downstream
of Wnt pathway components during early hair induction (Fig. 1C).
Nevertheless, placodal Wnt10b itself is a direct target of NFkB sig-
naling likely reinforcing placode fate stabilization (Fig. 1C) [33].
Additionally, multiple studies found that the expression of Wnt
inhibitor Dkk4 appears downstream of Edar signaling [38,64,74].
In terms of facilitating mesenchymal-epithelial interactions, Eda
overexpression in Eda null skin explants identified both dermal
Bmp4/7 and epidermal Bmp inhibitors to be downstream targets of
Edar signaling [75]. This allows a model in which Dkk4 and Bmp4/7
diffuse laterally to act on surrounding interfollicular epidermis to
suppress placode induction. In this reaction-diffusion model, the
central placode remains unperturbed, thanks to the expression of
Bmp inhibitors Ccn2 and Ctgf also downstream of Edar activation
[20,22,63,75-77]. Finally, Shh has been identified as a downstream
target of Edar signaling [77] which promotes initial follicle growth
following induction.

Apart from Wnt and Eda signaling as promoters of hair induc-
tion, BMP signaling activity in embryonic skin has an inhibitory
role. During early follicle formation, the BMP receptor Bmpr1la is
expressed in the epidermal compartment along with BMP2. BMP4
expression is selectively upregulated in dermal condensates [78].
Noggin, a BMP inhibitor, is also expressed from this compartment;
a balance of these contradictory signals is thought to fine-tune
the dermal messages sent to an epidermal target at this stage
of development (Fig. 1C) [79]. Neutralization of BMPs by noggin
overexpression stimulated robust formation of excess placodes
[80], while constitutive deletion of noggin impaired the induction
phase of follicle generation [79,81]. Secondary follicle induction
was specifically inhibited in noggin null embryos, and although pri-
mary follicles did form, they arrested at an early downgrowth stage
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lacking Lef1 and Shh expression. Interestingly, impaired epidermal
BMP signaling in receptor-null mice promoted accelerated placode
development, but was not sufficient to drive excessive follicle for-
mation [82]. To add further complexity, when BMP signaling was
abnormally sustained in noggin null skin, it could act back on the
epidermal compartment to downregulate Lef1 and Wnt/3-catenin
activity [83]. Such observations highlight the complex, overlap-
ping nature of the signals involved in this process, and the intricate
balance that needs to be maintained for successful morphogenesis.

Besides Wnt, Eda, and BMP pathways as major mediators of fol-
licle induction, Fgf signaling has been implicated as well, although
its role is less clearly defined. Multiple receptor and ligand iso-
forms are present during the early stages of hair development
[84-88]. Transgenic mice expressing a soluble, dominant-negative
Fegfr2llIb isoform failed to develop hair [89], and Fgfr2Illb knockout
mice displayed delayed induction suggesting that Fgf ligands work
to promote placode establishment [90,91]. However, more recent
investigations conclude that Fgf signaling actually deters induc-
tion. Immunostaining for Fgfr2IlIb reveals widespread expression
throughout E13.5 epidermis, and then subsequent downregulation
in placodes [42]. The role of Fgf signaling in normal hair follicle
induction thus requires further study and clarification.

3.3. Initial growth after induction

After induction, placode cells start to proliferate and generate
morphologically recognizable downgrowths under the direction of
two central signaling pathways: Shh and Pdgf. Shhis first expressed
in the developed placode and then localized to the tip of the down-
growing bulb in contact with the DP as development proceeds
[78,92]. The Shh receptor Patched is expressed by both epidermal
and dermal compartments from an early stage [61]. Shh knock-
out mice revealed an important role for this signaling pathway in
mediating early hair formation [93,94], since hair germs arrested at
the early downgrowth stage. Both epidermal and dermal compo-
nents of these early follicles were already recognizable suggesting
that Shh signaling, while dispensable for induction, is crucial for
these slightly later stages. To place this pathway in the context
of mesenchymal-epithelial interactions, studies used epithelial
or dermal-specific ablation of primary cilia components to effec-
tively abrogate Shh signaling separately within each compartment
[95,96]. Only dermal-specific knockout mice had a similar hair
phenotype as Shh mutants, suggesting that secreted Shh activates
effector pathways in a responsive dermis that directly or indirectly
supports placode proliferation (Fig. 1D). Very recently, studies in
which Smoothened was knocked out in early embryonic dermis
have conclusively proven that Shh signaling within dermal con-
densate cells is crucial for DP development and subsequent hair
follicle maturation [97]. Earlier studies of Shh pathway knockouts
found normal Wnt10b, Lef1, and Bmp2/4 expression in arrested fol-
licles, indicating that hedgehog signaling either lies downstream
or functions independently of these inductive molecules [93,94].
Complementary analyses have confirmed abrogated Shh expres-
sion in mice lacking epithelial Wnt or Eda, thus implicating it as a
target [55,73-75,77]. However, other dermal factors such as Wnt5a
and Pdgf receptor Pdgfra were found to be dysregulated in Shh
null follicles [36,61]. Wnt5a expression was completely missing
from stalled follicles in Shh mutants, while Pdgfra expressing der-
mal cells were still present but abnormally dispersed [61]. Since
these mice displayed normal Pdgfa ligand expression, the study
concluded that downstream targets of Shh signaling within the
dermis mediate Pdgf responsiveness and the effects of these two
pathways are jointly important for maintenance of the DP.

The role of Pdgf signaling in hair morphogenesis was rec-
ognized because Pdgfa knockout mice have sparse coats that
degenerate with age. This system provides a clear example of

mesenchymal-epithelial interactions, as the ligand is secreted
solely by epidermis and the Pdgfra receptor is uniquely expressed
in the dermis (Fig. 1D) [61]. Pdgfa expression is initially robust
and widespread in E13.5 epidermis before becoming concen-
trated in early stage placodes [61]. On the dermal side, Pdgfra
expression is broadly present throughout the upper dermis early
on, but becomes progressively restricted to cells within the DP
and along the dermal sheath. A significant percentage of Pdgfa
knockout mice die during embryogenesis, but those that sur-
vive display abnormally sparse hair and thin skin phenotypes
due to diminished white adipose tissue stores. The hair follicles
that do appear form normally, suggesting that the signaling path-
way is not essential for induction, but the primary coat cannot
be maintained and the secondary coat, which usually appears
at the first postnatal anagen starting after day P21, is never
generated [61]. Pdgfra knockouts die during embryogenesis, but
analysis of early skin reveals that follicles form normally, con-
firming that this signaling axis is not necessarily involved in
induction.

Tgfb signaling also promotes hair germ growth; in particu-
lar, mesenchymally-expressed Tgfb2 acts on epithelial receptors
(Fig. 1D) [98-100]. Full Tgfb2 knockout mice displayed delayed
and/or arrested follicle growth at E18.5 reminiscent of Shh null
mutants. Furthermore, culturing skin explants in vitro with exoge-
nous Tgfb2 promoted excessive follicle growth [101]. Finally, a role
of Tgfb/Activin signaling in hair morphogenesis was recognized
because Inhba (activin-BA) ligand knockout mice lack vibrissae
at birth [102,103]. Moreover, epidermal-specific receptor knock-
out mice produced fewer and misshapen follicles that degenerate
over time, suggesting dermally-generated ligands are needed to
direct both early and late stages of differentiation within the epi-
dermal compartment [104]. The related molecule follistatin, which
inhibits activin and Bmp ligands, is expressed from the epithe-
lial compartment and has been investigated in the context of hair
growth as well. Surprisingly, full knockouts resemble Inhba knock-
outs, with fewer, stunted follicles at birth. These findings suggest
follistatin works to fine-tune inputs from separate Tgf signaling
avenues before morphogenesis can move forward [105,106].

From several of the above-mentioned studies the idea emerges
that varying input from multiple signaling cascades leads to the
specification of unique hair types. For example, mouse models with
compromised Edar signaling lack only guard hairs, indicating that
this cascade is uniquely necessary for first wave follicle induction
[37]. Conversely, only guard hairs can form in the absence of nog-
gin [81], suggesting that inhibition of Bmp signaling is distinctly
required for second and third wave induction. When Shh is over-
expressed in the epidermis, both first and second wave follicles are
missing, and only third wave zigzag follicles are induced to form
[107]. Unique gene expression profiles within the mesenchymal
component of the HF specify hair type as well [40]. A differen-
tial requirement for Wnt signaling in either compartment has not
yet been described, except that epidermal overexpression of Dkk4
appears to affect only second wave morphogenesis [64]. Taken
together, evidence from these mutants suggests that the correct
balance of morphogens is necessary for the development of dis-
crete hair types, adding yet another layer of complexity for defining
a hierarchy of the central signaling pathways implicated in hair
formation.

4. Postnatal hair follicle induction capacity

4.1. Inductive capacity of mature DP

Dermal condensates in embryonic hair follicles are precursor
cells of the DP in fully formed hair follicles. Although it is believed
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that dermal condensates require stimuli from the placode to form,
mature DP cells retain hair inducing activity independent of pla-
codal signals. Early studies demonstrated that microdissected DPs
could induce new hair growth after transplantation into glabrous
skin of the foot pad [108]. Similarly, adult rat DPs from pelage
follicles were microdissected, cultured as single cells and then
implanted as cell clumps below foot pad epidermis to induce hair
follicle formation from overlying afollicular epidermis [109]. Sub-
sequent refinement of hair induction protocols by growing hairs
at the skin surface in chamber grafts [110] or deep in the subcuta-
neous skin tissue [111] now allows hair induction to be assessed
for hundreds of hairs simultaneously. Using such methods, pure DP
cells isolated based on fluorescent markers from postnatal backskin
retained hair induction capacity when transplanted together with
postnatal epidermal cells [14,40].

Interestingly, the hair type origin of DP cells also determines the
type of experimentally induced hair follicles; for example, whisker
DP cells induce whisker-like follicles on mouse ears [109]. Recent
transcriptional profiling of DP cells from pelage follicles gener-
ated a DP gene signature [14] and DPs from pelage hair cell types
retain a core signature but also exhibit distinct gene expression
profiles [40]. Sox2, for example, is robustly expressed in guard and
awl/auchene DP, but not in zigzag DP. The functional importance
of this difference was recently illustrated by isolating pelage DP
based on Sox2 expression prior to using these cells in separate
hair-reconstitution assays. Isolated Sox2-negative DPs, when com-
bined with keratinocytes in chamber graft assays, produced only
zigzag type hairs. These experiments highlight the importance of
mesenchymal-epithelial interactions in hair formation and pro-
vide powerful evidence that such interactions help drive hair type
specification during morphogenesis [40].

4.2. Adult follicle neogenesis after wounding

According to common knowledge, de novo hair follicle mor-
phogenesis is a one-time affair that is limited to embryogenesis
and early postnatal development. However, over half a century ago
observations in adult rabbits, mice and even humans suggested the
potential of new hair follicle formation in the context of a wound
response [112-115]. Recently wounding-induced hair follicle for-
mation was confirmed with elegant experiments in mice, in which
definitive genetic fate mapping demonstrated the origin of new
follicles, including their stem cells, from neighboring epidermal
cells during reepithelialization [116]. Ablation of Wnt signaling in
the healing wound completely abrogated new hair formation. The
potential role of an inductive mesenchyme and the origin of the
newly formed DPs has yet to be examined in this context.

5. Compartmental crosstalk during postnatal hair growth

After the early stages of downgrowth are complete, the DP is
thought to direct neighboring epithelial matrix cells to prolifer-
ate and differentiate into the multiple cell types that form the
hair shaft and its channel [3]. Several signaling programs central
to induction are involved in these later stages of follicle maturation
as well (Fig. 2); for example, Wnt signaling activity and nuclear Lef1
and 3-catenin expression in maturing hair shaft precursors point
to an important role of this pathway [56,117]. Hair shaft keratins
are regulated by Wnt signaling activity [117], and forced activa-
tion of Wnt signaling drove matrix cells into differentiating hair
masses resembling human benign hair tumors [48,118]. Inducible
[3-catenin ablation to block Wnt signaling activity in the matrix
cells specifically during the hair growth phase has not yet been
performed. However, active signaling in the dermal compartment
is important at this stage; cultured DP cells grown in the presence

P5
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Fig. 2. Signaling between matrix and DP during hair follicle growth. Multiple pos-
itive and negative regulators are in both compartments that may also signal in an
autocrine fashion.

of Wnt ligands retained hair inductive capabilities [119], and post-
natal ablation of (3-catenin in the DP compromised hair growth
[120].

The importance of Bmp signaling is also reiterated during post-
natal hair growth. Follicles formed when the Bmp receptor was
selectively deleted within the epithelial compartment, but matrix
cells were unable to undergo the proper program of maturation
and differentiation [82,121,122]. Ultimately, highly abnormal fol-
licles were generated because of an inherent inability of epithelial
progenitors to stabilize Lef1 and activate Wnt signaling. In other
investigations of Bmp signaling in postnatal growth, ligand over-
expression inhibited proliferation within the outer root sheath
resulting in small and misshapen follicles that were unable to
regenerate [123]. Overexpression of the Bmp inhibitor noggin leads
to excessive matrix cell proliferation and prevented hair shaft mat-
uration [124]. An important role for Bmp activity within DP cells
exists as well [125]. Ablation of Bmp signaling in isolated DP cells
abolished their ability to organize hair growth in a chamber graft
assay, suggesting that Bmp activity within the DP is required for
instructive capabilities.

Another pathway important for organizing hair growth dur-
ing postnatal morphogenesis is Fgf signaling through Fgf7/Fgf10
ligands [86]. Neonatal Fgfr2Illb null skin, insensitive to both lig-
ands, displayed cystic or misaligned follicle growth when cultured
in grafting experiments [91]. Finally, Notch signaling also appears
to participate in hair maturation, since mice with disrupted der-
mal Notch signaling developed intrinsic hair shaft defects [126].
Decreased Wnt5a in DP and reduced Foxn1 in matrix cells were part
of the mechanism behind this phenotype. Notch signaling within
matrix progenitors is also necessary to maintain proper terminal
hair differentiation [127,128].

Several intrinsic transcriptional regulators such as Cutll,
Gata3, Hoxc13, Foxnl and Msx2 directly affect hair shaft dif-
ferentiation, structure and shape (reviewed in [2]). Whether
mesenchymal-epithelial interactions are involved or these factors
function in a compartment-autonomous manner remains to be

Cell Dev Biol (2012), http://dx.doi.org/10.1016/j.semcdb.2012.08.011

Please cite this article in press as: Sennett R, Rendl M. Mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling. Semin



dx.doi.org/10.1016/j.semcdb.2012.08.011

G Model
YSCDB-1369; No.of Pages11

R. Sennett, M. Rendl / Seminars in Cell & Developmental Biology xxx (2012 ) xxx-xxx 7

determined. Egf, Igf and Tgfa signaling pathway activation can also
affect hair shape [2].

After the anagen growth period, follicles enter the cata-
gen destruction phase, which also seems to be regulated by
mesenchymal-epithelial interactions and influences from the
macroenvironment [16]. Knockout mice lacking Fgf5, which is
expressed in DP, are characterized by abnormally long hair due to
a prolonged anagen phase, indicating that signaling through this
ligand promotes catagen entry [129]. Other examples of factors
that advance the anagen/catagen transition include Bdnf, IL1b, Ntf3,
Tgfb1 and Tnf, while Hgf, Igf1 and Vegf promote anagen mainte-
nance (reviewed in [130,131]). The direct source of origin and the
potential involvement of mesenchymal-epithelial interactions for
many of these molecules remain to be clarified.

6. Signals during hair regeneration
6.1. Signals from the dermal papilla

During the anagen growth phase DP cells in the bulb are far
removed from bulge epithelial stem cells in the upper part of the
follicle, and most likely do not contribute to regulation of stem
cell quiescence [15,132,133]. Other cell types in the immediate
stem cell microenvironment or niche, such as endothelial cells,
Schwann cells and nerve endings, and dermal sheath cells are con-
sidered to provide signals keeping the stem cells in a quiescent
state [31,134]. Although tantalizing gene expression analyses in
the stem cells suggest such a model [12,13,15], direct evidence is
lacking. The same analyses proposed secreted factors generated
by stem cells may regulate their own behavior in an autocrine
fashion. In addition, bulge epithelial stem cells affect neighboring
melanocyte stem cells [135,136] and muscle progenitor cells just
outside the bulge that give rise to the arrector pili muscle [137],
and in return these cells may influence epithelial stem cell behav-
ior as well. On the other hand, many stem cell intrinsic factors, such
as transcription factors Lhx2, Nfatc1, Runx1, Sox9, Stat3, Tcf3/Tcf4
were shown in loss of function studies to directly affect stem cell
quiescence and activation, and subsequent hair regrowth during
the hair cycle [23,138-144]. Again, direct regulation of these fac-
tors by interactions of the epithelial stem cells with the neighboring
mesenchyme has not been established yet, leaving the possibility
that these essential genes are regulated cell-autonomously and not
necessarily influenced by mesenchymal-epithelial interactions.

As the hair cycle ensues, DP cells move upwards toward the skin
surface during the catagen destruction phase and come to rest next
to the bulge stem cells and hair germ progenitor cells during the
telogen resting phase. It is not clear whether DP cells join the niche
efforts to regulate stem cell quiescence, but historically the pres-
ence of DP cells next to the stem cell compartment is considered
essential for activating stem/germ cells to regenerate the follicle in
anew anagen growth (Fig. 3)[3]. While conceptually appealing, this
model lacked substantiating evidence until very recently because of
the absence of DP-specific inducible gene targeting tools to directly
interrogate the role of genes in the DP for stem cell activation in the
bulge. Nevertheless, without such tools, the activating role of the
DP was confirmed by using laser ablation to selectively target DP
cells in vivo during hair cycling [145]. After DP cells were phys-
ically disrupted corresponding follicles became quiescent while
neighboring unaffected follicles continued to cycle. Other examples
supporting the instructive role of DP cells during hair re-growth
came from hairless (Hr) and vitamin D receptor (Vdr) mutant mice,
in which DP cells fail to move upwards toward the bulge during
the catagen destruction phase, leaving DP cells stranded deep in
the dermis [146,147]. New hair follicle regeneration at the end of
telogen is absent, suggesting that the presence of DP cells next to
bulge stem cells is important for inducing new hair re-growth. More

Telogen - anagen

transition
Epidermis
Dermis
Fgf7/Fgf10 Wnt/B-cat
Noggin/Sostdc1 Bulge active
Tgfb2 1 j
Wnt/B-cat active ‘er’
Bmp4 DP
FIf18  [wnts? ‘
PDGFa
Adipose Y
Bmp2/4

Fig. 3. Signals regulating stem cell quiescence and activation during the hair cycle.
Bmp2/4 from DP/adipose tissue and Fgf18 from bulge/DP inhibit stem cell activation.
Activation of Wnt signaling in the bulge and secreted Fgf7/10 and Bmp inhibitors
from the DP activate stem cells to re-grow a new follicle during hair regeneration.

recent, albeit indirect evidence comes from work demonstrating
that DP-derived Fgf7 and Fgf10 are involved in promoting hair fol-
licle regeneration during the anagen to telogen transition [148].
Exogenously supplied Fgf7, normally expressed in DP cells [14],
induced bulge/hair germ proliferation, suggesting that DP-derived
Fgf7 could be a stem cell activating signal (Fig. 3). Another cytokine
that could act on the stem cells both in an autocrine fashion and
through mesenchymal-epithelial interactions is Fgf18, which was
found to be expressed in bulge cells and to inhibit bulge cell prolif-
eration in vitro [13]. More recently, Fgf18 expression was described
as high in both DP and bulge cells during mid-telogen, and ablation
of the factor in the stem cell compartment prompted rapid pro-
gression into active hair growth (Fig. 3). Additionally, Fgf18 could
suppress hair growth in studies involving the injection of recombi-
nant Fgf18 protein [149]. Genetic tools to selectively target genes
of interest in the DP will be necessary to understand the molecular
mechanisms behind DP-induced stem cell activation during hair
cycling.

Many recent studies have also demonstrated a critical role
for Wnt and Bmp signaling during hair regeneration in terms
of controlling stem cell quiescence and activation [28,150,151].
Forced activation of Wnt signaling through expression of stabi-
lized B-catenin led to precocious stem cell activation in the bulge
[50,152,153]. Conditional and inducible ablation of 3-catenin in the
bulge during telogen showed a loss of quiescence and depletion
of stem cells [152]. Therefore inhibition of Wnt signaling by Tcf3
within the stem cells [142] and by secreted Wnt inhibitors from the
stem cells [15] and the niche [148] appear to be crucial for main-
taining stem cell quiescence, while activation of Wnt signaling is
required for the transition to a new hair growth phase (Fig. 3).Ina
reversed role to Wnt signaling, active Bmp signaling is required for
stem cell quiescence, since ablation of Bmp receptors in stem cells
leads to aberrant stem cell activation [154,155]. It appears that for
stem cell activation and new hair follicle regrowth to occur, upre-
gulation of Bmp inhibitors in the DP [148,156] and downregulation
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oflong-range Bmp signals from deep in the dermis (see below) have
to coincide with activation of Wnt signaling in the bulge (Fig. 3).

Most recent evidence also implicated an essential role of Tgfb
signaling in the stem cell compartment. By selectively ablating
the Tgfbr2 receptor expressed in stem cells, these studies demon-
strated that Tgfb2 ligands generated in the DP act on the epithelial
compartment to promote a switch from quiescence to active regen-
eration [157]. Downstream of activated Tgfb2 signaling, target
genes suppress propagation of Bmp signaling and allow onset of
a new round of follicle cycling. This is consistent with earlier stud-
ies, in which authors were able to provoke premature anagen by
injecting recombinant Tgfb into skin [101].

6.2. Role of the macroenvironment

Besides influences from the local stem cell microenvironment,
fat tissue deeper in the dermis was recently described as a hereto-
fore unrecognized niche cell population, capable of secreting
factors to influence hair cycling from a distance. Fat-derived Pdgf
in particular was proposed to act on DP cells which in turn regu-
late induction of follicle regeneration in the hair cycle (Fig. 3) [158].
Mutant mice with defects in skin adipocyte precursor cells, which
normally express high levels of Pdgfa ligand, lacked Pdgfra recep-
tor activation in DP cells. Hair re-growth failed during the cycle, but
could be recovered by injecting beads soaked in Pdgfa, suggesting
that fat-stimulated activation of this signaling pathway in the DP
niche elicits downstream events to trigger follicle regeneration.

Influences from fat may regulate the behavior of cohorts of hair
follicles at once, providing macroenvironmental cues that can affect
larger domains of the hair coat in which all follicles cycle together
in a dynamic fashion. Such a model is supported by recent findings
of cyclical Bmp expression in the fat domain [159]. High Bmp lev-
els reach the bulge area and help to keep Wnt-repressed stem cells
quiescent, thereby promoting a refractory telogen phase. Together
with activation of Wnt/[3-catenin signaling, widespread downregu-
lation of long-range Bmp signals then promotes stem cell activation
and new hair re-growth during an “induction competent” phase
[160].

7. Concluding remarks

Hair follicle morphogenesis is an excellent model system in
which to explore universal developmental themes, and studies of
mesenchymal-epithelial interactions in this context have been par-
ticularly robust. As described in this review, numerous aspects of
the communication between epidermis and dermis during hair
induction, growth and regeneration have been uncovered. Never-
theless, despite decades of increasingly meticulous investigation,
many details of the complex mechanisms driving hair follicle
morphogenesis and cycling remain obscure. Studies have been hin-
dered by multiple signaling isoforms that impart redundancy, as
well as intricate pathway intersections and feedback loops that
are difficult to untangle using mouse models. Two central mys-
teries that remain to be explored are the nature of the first dermal
signal(s) during embryonic hair follicle induction and the activat-
ing signal(s) from DP cells during hair regeneration in the cycle.
Clarification of timing, origins, and targets of important signal-
ing pathway components will be necessary as well. Additionally,
advances have been hampered by the absence of tools to specifi-
cally manipulate gene expression in inductive DP precursors during
early formation stages and adult DP cells during regeneration.
Compartment-specific genetic drivers to target the placode and
lineages in the mature hair follicle will be useful as well. As our
tools continue to be refined, so too will our understanding of
how epithelial and mesenchymal tissues cooperate to create such

elaborate and patterned structures as the hair follicle, imparting
a greater understanding of developmental paradigms and poten-
tially information about hair growth that will be useful in clinical
applications.
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