How to Accelerate Genome Analysis by Using
NVIDIA Parabricks

Minerva Scientific Computing Environment

https://labs.icahn.mssm.edu/minervalab

S M Shamimul Hasan, PhD m

The Minerva HPC Team Icahn
School of

Medicine at
Mount

March 25, 2025 b
Sinai

What is NVIDIA Parabricks?

A software suite designed to accelerate genomic data analysis by leveraging GPU
(graphics processing unit) computing.
. High-speed genomic analysis
. Integrates with widely used genomics analysis tools and pipelines (such as GATK)
« Compatible with multiple bioinformatics formats
« Preserves the accuracy of standard CPU-based genomics workflows
« Compatible with common workflow managers WDL and NextFlow

(https://github.com/clara-parabricks-workflows)

https://docs.nvidia.com/clara/parabricks/4.3.0/

https://docs.nvidia.com/clara/parabricks/4.3.0/

Tools Supported by Parabricks

fg2bam
(bwa-mem)

MiniMap2

applybgsr

bamsort

deepvariant

haplotypecaller

mutectcaller

starfusion

somatic

germline

deepvariant
germline

PacBio germline

bammetrics

collectmultiple
metrics

https://docs.nvidia.com/clara/parabricks/4.3.0/toolreference.htm

indexgvcf

dbsnp

genotypegvcf

prepon

postpon

https://docs.nvidia.com/clara/parabricks/4.3.0/toolreference.html

BWA-MEM

Sort, MarkDups,
Apply BQSR

HaplotypeCaller

DeepVariant

Mutect2

v3.8 Benchmarks

Dataset: HG002 30x WGS, except Mutect2 on SEQC2 50x WGS

b]'l mins

11 mins

45 mins

Up to 80x Acceleration

Gold-standard results, faster

~4 hrs

~5 hrs

CPU: m5.24xlarge; GPU: 8xA100, except DeepVariant & Mutect2 on 8xV100

~9 hrs

Runtimes on CPU

Runtimes on NVIDIA GPU

~16 hrs

~31 hrs

<INVIDIA

Containers

» A standard unit of software that
packages up code and all its
dependencies, so the application runs
quickly and reliably from one computing
environment to another.

By-function containers provide:
» Software bundles for applications
» Self contained environment

» Platform/Host agnostic

https://www.docker.com/resources/what-container
https://portal.biohpc.swmed.edu/content/guides/singularity-containers-biohpc/

Host kernel

Filesystems /sc/arion, /home
Devices and drivers
Applications, Ghome Desktop, /usr/bin

Modules

Applications

and dependencies

Container Namespace

https://www.docker.com/resources/what-container

$ ml av singularity
$ module load singularity/3.6.4

$ singularity pull docker://gcc:10

$ 1s -1
-rwxr-xr-x 1 yuj25 hpcstaff 396431360 Oct 4 17:04 gcc_10.sif

$ singularity pull library://vigo332/default/singularity-rstudio-r4

$ singularity build ollama.sif docker://ollama/ollama:latest

https://hub.docker.com/
https://cloud.sylabs.io/library

$ singularity cache list -v

NAME DATE CREATED SIZE
0e3f4c426c9e5994ac625¢c 2021-04-23 16:46:57 440.43 MB
0f46f97746e4df5959e8c8 2021-04-26 12:57:43 213.09 mMB

$ singularity cache clean

$ SINGULARITY_CACHEDIR=/sc/arion/scratch/yuj25/containers/cache \
singularity pull docker://gcc:10

INFO: Converting OCI blobs to SIF format
INFO: Starting build...

Getting image source signatures

Copying blob 723254a2c089 done

Copying blob abe15a44e12f done

Copying blob 409a28e3cc3d done

$ singularity shell gcc_10.sif
Singularity> gcc -v

gcc version 10.4.0 (GCC)
Singularity> exit

exit

$gcc -v

gcce version 4.8.5 20150623 (Red Hat 4.8.5-36) (GCC)

$ singularity exec gcc_10.sif gcc -v

gcc version 10.4.0 (GCC)

$ singularity pull library://sylabsed/examples/lolcow

$ singularity run library://sylabsed/examples/lolcow

/ Q: How many elephants can you fit in a

\
| VW Bug? A: Four. Two in the front, two |
| in the back. |
! !
| Q: How can you tell if four elephants |
| are in your refrigerator? A: There's a |
\ VW Bug in your driveway. /

/_/\

(o00)\

(_ O\)AVAN
[[-=--w |

$apptainer pull
$apptainer cache list -v
$apptainer shell

Parabricks Testing in the Command Line

[choh07@1103c02 ~]$ bsub -P acc_hpcstaff -q gpu -gpu num=1 -R al00 -n 8 -R span[hosts=1] -R rusage[mem=8GB] -W 1:00 -XF -Is /bin/bash
Job <144134351> 1is submitted to queue <gpu>.

<<ssh X11 forwarding job>>

<<Waiting for dispatch ...>>

<<Starting on 1g07c05.chimera.hpc.mssm.edu>>

[choh07@lg07c05 ~]1%

~]$ ml parabricks

image 1is /hpc/packages/minerva-centos7/parabricks/4.3.0-1/clara-parabricks_4.3.0-1.sif.
~1$
~]$ PARABRICKS=/hpc/packages/minerva-centos7/parabricks/4.3.0-1/clara-parabricks_4.3.0-1.sif
~1$
[choh07@lg07c05 ~]$ ml

Currently Loaded Modules:
1) singularity/3.6.4 2) cuda/12.1.1 3) parabricks/4.3.0-1

Parabricks Testing in the Command Line

[choh07@1g07c05 ~]$ singularity exec $PARABRICKS pbrun --help
Please visit https://docs.nvidia.com/clara/#parabricks for detailed documentation

usage: pbrun <command> [<args>]
Help: pbrun -h

command can be a TOOL or FULL PIPELINE. Example:
pbrun fg2bam --ref genome.fa --1in-fq sample_1.fq.gz sample_2.fq.gz --out-bam sample.bam
pbrun germline --ref genome.fa --in-fq sample_1.fq.gz sample_2.fq.gz --out-bam sample.bam --out-variants sample.vcf

command options for standalone TOOL

applybgsr Apply BQSR report to a BAM file and generate a new BAM file

bam2fq Convert a BAM file to FASTQ

bammetrics Collect WGS Metrics on a BAM file

bamsort Sort a BAM file

bgsr Collect BQSR report on a BAM file

collectmultiplemetrics Collect multiple classes of metrics on a BAM file

dbsnp Annotate variants based on a dbsnp

deepvariant Run GPU-DeepVariant for calling germline variants

fq2bam Run bwa mem, co-ordinate sorting, marking duplicates, and Base Quality Score Recalibration
fg2bam_meth Run GPU-accelerated bwa-meth compatible alignment, co-ordinate sorting, marking duplicates, and Base Quality Score Recalibration
fq2bamfast Run newly optimized version of bwa mem, co-ordinate sorting, marking duplicates, and Base Quality Score Recalibration
genotypegvcf Convert a GVCF to VCF

haplotypecaller Run GPU-HaplotypeCaller for calling germline variants

indexgvcf Index a GVCF file

markdup Identifies duplicate reads

minimap2 Align long read sequences against a large reference database to convert FASTQ to BAM/CRAM
mutectcaller Run GPU-Mutect2 for tumor-normal analysis

postpon Generate the final VCF output of doing mutect pon

prepon Build an index for PON file, which is the prerequisite to performing mutect pon

rna_fg2bam Run RNA-seq data through the fg2bam pipeline

starfusion Identify candidate fusion transcripts supported by Illumina reads

command options for commonly used FULL PIPELINES

deepvariant_germline - Run the germline pipeline from FASTQ to VCF using a deep neural network analysis

pacbio_germline - Run the germline pipeline from FASTQ to VCF by aligning long read sequences with minimap2 and using a deep neural network analysis
germline - Run the germline pipeline from FASTQ to VCF

somatic - Run the somatic pipeline from FASTQ to VCF

Information about the software

Parabricks Testing in the Command Line

[choh07@1g07c05 ~]$ singularity exec $PARABRICKS pbrun bam2fq --help
Please visit https://docs.nvidia.com/clara/#parabricks for detailed documentation

usage: pbrun bam2fq [<args>]
Help: pbrun bam2fq -h

Run bam2fq to convert BAM/CRAM to FASTQ.

optional arguments:
-h, --help show this help message and

Input Output file options:
Options for Input and Output files for this tool.

--ref REF Path to the reference file. This argument 1is only required for CRAM input. (default: None)
--in-bam IN_BAM Path to the input BAM/CRAM file to convert to fastq.gz. (default: None)

--out-prefix OUT_PREFIX
Prefix filename for output fastq files. (default: None)

Tool Options:
Options specific to the tool.

--out-suffixF OUT_SUFFIXF
Output suffix used for paired reads that are first in pair. The suffix must end with ".gz". (default: _1.fastq.gz)
--out-suffixF2 OUT_SUFFIXF2
Output suffix used for paired reads that are second in pair. The suffix must end with ".gz". (default: _2.fastq.gz)
--out-suffix0 OUT_SUFFIXO
Output suffix used for orphan/unmatched reads that are first in pair. The suffix must end with ".gz".
these reads will be 1ignored. (default: None)
--out-suffix02 OUT_SUFFIX02
Output suffix used for orphan/unmatched reads that are second in pair. The suffix must end with ".gz". If no suffix is provided,
these reads will be ignored. (default: None)
--out-suffixS OUT_SUFFIXS
Output suffix used for single-end/unpaired reads. The suffix must end with ".gz".
ignored. (default: None)
--rg-tag RG_TAG Split reads into different fastq files based on the read group tag. Must be either PU or ID. (default: None)
--remove-qc-failure Remove reads from the output that have abstract QC failure. (default: None)

If no suffix is provided,

If no suffix is provided, these reads will be

Performance Options:

Parabricks Testing in the Command Line

[choh07@lg07c05 ~]$ singularity exec --nv $PARABRICKS pbrun fg2bam -h
Please visit https://docs.nvidia.com/clara/#parabricks for detailed documentation

usage: pbrun fqg2bam [<args>]

Help: pbrun fg2bam -h

Run GPU-bwa mem, co-ordinate sorting, marking duplicates, and Base Quality Score Recalibration to convert FASTQ to BAM/CRAM.

optional arguments:
-h, --help

show this help message and exit

Input Output file options:

Options for Input and

--ref REF
--in-fq [IN_FQ [IN_FQ

Output files for this tool.

Path to the reference file. (default: None)

...1]

Path to the pair-ended FASTQ files followed by optional read groups with quotes (Example:
"@G\tID:foo\tLB:1ib1\tPL:bar\tSM:sample\tPU:foo"). The files must be in fastq or fastq.gz format. All sets of inputs should have a read
group; otherwise, none should have a read group, and it will be automatically added by the pipeline. This option can be repeated multiple
times. Example 1: --in-fq sampleX_1_1.fastq.gz sampleX_1 2.fastq.gz --in-fq sampleX_2_1.fastq.gz sampleX_2_2.fastq.gz. Example 2: --1in-fq
sampleX_1 1.fastq.gz sampleX_ 1_2.fastq.gz "@RG\tID:foo\tLB:lib1\tPL:bar\tSM:sample\tPU:unitl" --in-fq sampleX_2_1.fastq.gz
sampleX_2_2.fastq.gz "@G\tID:foo2\tLB:1lib1\tPL:bar\tSM:sample\tPU:unit2". For the same sample, Read Groups should have the same sample
name (SM) and a different ID and PU. (default: None)

--in-se-fq [IN_SE_FQ [IN_SE_FQ ...]]

Path to the single-ended FASTQ file followed by optional read group with quotes (Example:
"@RG\tID:foo\tLB:1lib1\tPL:bar\tSM:sample\tPU:foo"). The file must be in fastq or fastq.gz format. Either all sets of inputs have a read
group, or none should have one, and it will be automatically added by the pipeline. This option can be repeated multiple times. Example
1: --in-se-fq sampleX_1.fastq.gz --in-se-fq sampleX 2.fastq.gz . Example 2: --in-se-fq sampleX_ 1.fastq.gz
"@RG\tID:foo\tLB:lib1\tPL:bar\tSM:sample\tPU:unitl" --in-se-fq sampleX_ 2.fastq.gz "@RG\tID:foo2\tLB:1ib1\tPL:bar\tSM:sample\tPU:unit2" .
For the same sample, Read Groups should have the same sample name (SM) and a different ID and PU. (default: None)

--in-fq-list IN_FQ_LIST

Parabricks Testing in the Command Line

[choh07@lg07c05 ~]$ singularity exec --nv --bind $DATA_DIR:$DATA DIR $PARABRICKS pbrun fq2bam --ref $REF --1in-fgq $INP_fql $INP_fqg2 --out-bam $OUT_BAM --num-gpus 1
Please visit https://docs.nvidia.com/clara/#parabricks for detailed documentation

[Parabricks Options Mesg]: Checking argument compatibility
[Parabricks Options Mesg]: Automatically generating ID prefix
[Parabricks Options Mesg]: Read group created for /sc/arion/scratch/choh@7/pbtest/Data/sample_1.fq.gz and
/sc/arion/scratch/choh07/pbtest/Data/sample_2.fq.gz
[Parabricks Options Mesg]: @RG\tID:HK3TJBCX2.1\tLB:lib1\tPL:bar\tSM:sample\tPU:HK3TIBCX2.1
Info 2024-Nov-04 22:28:03]
Info 2024-Nov-04 22:28:03] Parabricks accelerated Genomics Pipeline
Info 2024-Nov-04 22:28:03] Version 4.3.0-1
Info 2024-Nov-04 22:28:03] GPU-BWA mem, Sorting Phase-I
Info 2024-Nov-04 22:28:03]
::bwa_1dx_load_from disk] read © ALT contigs
Info 2024-Nov-04 22:28:06] GPU-BWA mem
Info 2024-Nov-04 22:28:06] ProgressMeter Reads Base Pairs Aligned
Info 2024-Nov-04 22:28:32] 5043564 580000000
Info 2024-Nov-04 22:28:50] 10087128 1160000000
Info 2024-Nov-04 22:29:08] 15130692 1740000000
Info 2024-Nov-04 22:29:24] 20174256 2320000000
Info 2024-Nov-04 22:29:42] 25217820 2900000000
Info 2024-Nov-04 22:29:59] 30261384 3480000000
Info 2024-Nov-04 22:30:17] 35304948 4060000000
Info 2024-Nov-04 22:30:33] 40348512 4640000000
Info 2024-Nov-04 22:30:50] 45392076 5220000000
Info 2024-Nov-04 22:31:08] 50435640 5800000000
Info 2024-Nov-04 22:31:25]
GPU-BWA Mem time: 199.060446 seconds
[PB Info 2024-Nov-04 22:31:25] GPU-BWA Mem is finished.

[main] CMD: /usr/local/parabricks/binaries/bin/bwa mem -Z ./pbOpts.txt -F @ /sc/arion/scratch/choh07/pbtest/Ref/Homo_sapiens_assembly38.fasta /sc/arion/scratch/cho
h07/pbtest/Data/sample_1.fq.gz /sc/arion/scratch/choh@7/pbtest/Data/sample_2.fq.gz @RG\tID:HK3TIBCX2.1\tLB:1ib1\tPL:bar\tSM:sample\tPU:HK3TIBCX2.1
[main] Real time: 202.232 sec; CPU: 1558.157 sec

Info 2024-Nov-04 22:31:25]

Info 2024-Nov-04 22:31:25] Program: GPU-BWA mem, Sorting Phase-I

Info 2024-Nov-04 22:31:25] Version: 4.3.0-1

Info 2024-Nov-04 22:31:25] Start Time: Mon Nov 4 22:28:03 2024

Info 2024-Nov-04 22:31:25] End Time: Mon Nov 4 22:31:25 2024

Info 2024-Nov-04 22:31:25] Total Time: 3 minutes 22 seconds

Running Parabricks (fg2bam)

Run Parabricks on Minerva Compat|b|e CPU-based BWA‘MEM, GATK4 Commands
singularity exec --nv --bind SWORK_DIR :SWORK_DIR \ # Run bwa-mem and pipe the output to create a sorted BAM.

SPARABRICKS pbrun fq2bam \ § bwa men |

--ref sWORK_DIR/S{REFERENCE_FILE} \ -K 10000000 \

--in-fq SWORK_DIR/S{INPUT_FASTQ_1} SWORK_DIR/S{INPUT_FASTQ_2} \ -R '@RG\tID:sample_rg1\tLB:1ib1\tPL:bar\tSM:sample\tPU:sample_rg1' \

--knownSites $WORK_DIR/${KNOWN_SITES_FILE} \ <INPUT_DIR>/S{REFERENCE_FILE} <INPUT_DIR>/S${INPUT_FASTQ_1} <INPUT_DIR>/S${INPUT_FASTQ_2} | \

--out-bam $WORK_DIR/S${OUTPUT_BAM} \ gatk SortSam \

--out-recal-file SWORK_DIR/${OUTPUT_RECAL_FILE} --java-options -Xmx38g \

--MAX_RECORDS_IN_RAM 5000000 \

-1 /dev/stdin \
-0 cpu.bam \
--SORT_ORDER coordinate

Mark duplicates.

$ gatk MarkDuplicates \
--java-options -Xmx306g \
-1 cpu.bam \
-0 mark_dups_cpu.bam \
-M metrics.txt

Generate a BQSR report.

$ gatk BaseRecalibrator \
--java-options -Xmx30g \
--input mark_dups_cpu.bam \
--output <OUTPUT_DIR>/S{OUTPUT_RECAL_FILE} \
--known-sites <INPUT_DIR>/S{KNOWN_SITES_FILE} \
--reference <INPUT_DIR>/${REFERENCE_FILE}

Running Parabricks (rna_fg2bam)

Run Parabricks on Minerva Compatible CPU-based STAR, GATK4 Commands
singularity exec --nv --bind SWORK_DIR:$WORK_DIR \ # STAR Alignment
$PARABRICKS pbrun rna_fg2bam \ $./STAR \
--in-fq $WORK_DIR/S{INPUT_FASTQ_1} SWORK_DIR/S{INPUT_FASTQ 2} \ --genomeDir <INPUT_DIR>/${PATH_TO_GENOME_LIBRARY} \
--genome-1lib-dir $WORK_DIR/${PATH_TO_GENOME_LIBRARY}/ \ --readFilesIn <INPUT_DIR>/S{INPUT_FASTQ_1} <INPUT_DIR>/S{INPUT_FASTQ_2} \
--output-dir $WORK_DIR/S{PATH_TO_OUTPUT_DIRECTORY} \ --outFileNamePrefix <OUTPUT_DIR>/${PATH_TO_OUTPUT_DIRECTORY}/ \
—-ref S$WORK_DIR/S{REFERENCE_FILE} \ --outSAMtype BAM SortedByCoordinate \
--out-bam SWORK_DIR/S{OUTPUT_BAM} \ --readFilesCommand zcat
--read-files-command zcat
Mark Duplicates

$ gatk MarkDuplicates \
--java-options -Xmx30g \
-1 Aligned.sortedByCoord.out.bam \# This filename is determined by STAR.
-0 <OUTPUT_DIR>/S{NAME_OF_OUTPUT_BAM_FILE} \
-M metrics.txt

Running Parabricks (haplotypecaller)

Run Parabricks on Minerva

Compatible CPU-based GATK4 Commands

singularity exec --nv --bind SWORK_DIR:SWORK_DIR \
SPARABRICKS pbrun haplotypecaller \
--ref SWORK_DIR/S{REFERENCE_FILE} \
--in-bam SWORK_DIR/S{INPUT_BAM} \
--in-recal-file SWORK_DIR/S{INPUT_RECAL_FILE} \
--out-variants SWORKDIR/S{OUTPUT_VCF}

Run ApplyBQSR Step

$ gatk ApplyBQSR \
--java-options -Xmx30g \
-R Ref/Homo_sapiens_assembly38.fasta \
-I mark_dups_cpu.bam \
--bgsr-recal-file recal_file.txt \
-0 cpu_nodups_BQSR.bam

#Run Haplotype Caller
$ gatk HaplotypeCaller \
--java-options -Xmx30g \
--input cpu_nodups_BQSR.bam \
--output result_cpu.vcf \
--reference Ref/Homo_sapiens_assembly38.fasta \
--native-pair-hmm-threads 16

Batch Job Submission Example (fq2bam)

[choh07@1103c02 pbtest]$ cat fg2bam.lsf
#!/b1in/bash
-J fq2bam Job name
-P acc_hpcstaff allocation account
-Q gpuexpress queue
-n 64 number of compute cores
-W 10 walltime in HH:MM
-R h10080g
#BSUB -gpu num=4
#BSUB -R rusage[mem=4000] 256 GB of memory (4 GB/core * 64 cores)
#BSUB -R span[hosts=1] all cores from the same node
#BSUB -0 %J].stdout output log (%] : JobID)
#BSUB -eo %J.stderr error log
#BSUB -L /bin/bash Initialize the execution environment

ml parabricks

Set Input Parameters
PARABRICKS=/hpc/packages/minerva-centos7/parabricks/4.3.0-1/clara-parabricks_4.3.0-1.sif
DATA_DIR=/sc/arion/scratch/choh07/pbtest

INP_fql=$DATA_DIR/Data/sample_1.fq.gz

INP_fq2=$DATA_DIR/Data/sample_2.fq.gz

REF=$DATA_DIR/Ref/Homo_sapiens_assembly38.fasta

OUT_BAM=$DATA_DIR/output.bam

Run FQ2BAM (FASTA + FASTQ ==> BAM)
singularity exec \
--nv --bind $DATA DIR:$DATA_DIR $PARABRICKS \
pbrun fg2bam --ref $REF --1in-fq $INP_fql $INP_fg2 --out-bam $0UT_BAM --num-gpus 4
[choh07@1103c02 pbtest]$
[choh07@1103c02 pbtest]$
[choh07@1103c02 pbtest]$ bsub < fg2bam.lsf
Job <144140780> is submitted to queue <gpuexpress>.
[choh07@1103c02 pbtest]$ i

Batch Job Submission Example (deepvariant)

[choh07@L103c02 pbtest]$ cat deepvariant.lsf

#!/bin/bash

#BSUB -J deepvariant Job name

#BSUB -P acc_hpcstaff allocation account

#BSUB -q gpuexpress queue

#BSUB -n 64 number of compute cores

#BSUB -W 10 walltime in HH:MM

#BSUB -R h10080g

#BSUB -gpu num=4

#BSUB -R rusage[mem=4000] 256 GB of memory (4 GB/core * 64 cores)
#BSUB -R span[hosts=1] all cores from the same node

#BSUB -0 %J].stdout output log (%J : JobID)

#BSUB -eo %J.stderr error log

#BSUB -L /bin/bash Initialize the execution environment

ml parabricks

Set Input Parameters
PARABRICKS=/hpc/packages/minerva-centos7/parabricks/4.3.0-1/clara-parabricks_4.3.0-1.sif
DATA_DIR=/sc/arion/scratch/choh07/pbtest

INP_fql=$DATA_DIR/Data/sample_1.fq.gz

INP_fq2=$DATA_DIR/Data/sample_2.fq.gz

REF=$DATA_DIR/Ref/Homo_sapiens_assembly38.fasta

IN_BAM=$DATA_DIR/output.bam

OUT_VARIANTS=$DATA DIR/haplotype.vcf

Run DeepVariant (BAM ==> VCF)
singularity exec \
--nv --bind $DATA DIR:$DATA_DIR $PARABRICKS \
pbrun deepvariant \
--ref $REF \
--in-bam $IN_BAM \
--out-variants $OUT_VARIANTS \
--num-cpu-threads-per-stream 6 \
--num-streams-per-gpu 2 \
--num-gpus 4

Monitoring Resource Usage

[choh07@1103c02 pbtest]$ bjobs -gpu -1 144140780

Job <144140780>, Job Name <fg2bam>, User <choh07>, Project <acc_hpcstaff>, Appl
ication <default>, Status <DONE>, Queue <gpuexpress>, Job
Priority <50>, Command <#!/bin/bash;#BSUB -] fq2bam

Mon Nov 4 23:44:46: Done successfully. The CPU time used is 2052.0 seconds.
HOST: 19g05g29; CPU_TIME: 2052 seconds
GPU ID: ©
Total Execution Time: 132 seconds
Energy Consumed: 8459 Joules
SM Utilization (% Avg 15, Max 93, Min 0
Memory Utilization (%): Avg 1, Max 9, Min 0
Max GPU Memory Used: 17448304640 bytes

g gl

Total Execution Time: 132 seconds

Energy Consumed: 8017 Joules

SM Utilization (%): Avg 14, Max 94, Min 0
Memory Utilization (%): Avg 1, Max 9, Min 0
Max GPU Memory Used: 17448304640 bytes

ID: 2

Total Execution Time: 132 seconds

Energy Consumed: 8185 Joules

SM Utilization (%): Avg 13, Max 96, Min 0
Memory Utilization (%): Avg 1, Max 9, Min 0
Max GPU Memory Used: 17448304640 bytes

ID: 3

Total Execution Time: 132 seconds

Energy Consumed: 9335 Joules

SM Utilization): Avg 12, Max 94, Min 0
Memory Utilization (%): Avg 1, Max 9, Min 0
Max GPU Memory Used: 17448304640 bytes

GPU Energy Consumed: 33996.000000 Joules

RUNLIMIT
10.0 min

MEMLIMIT
3.96G

MEMORY USAGE:
MAX MEM: 36.6 Gbytes; AVG MEM: 12.4 Gbytes; MEM Efficiency: 14.66%

CPU USAGE:
CPU PEAK: 21.63 ; CPU PEAK DURATION: 60 second(s)
CPU AVERAGE EFFICIENCY: 20.52% ; CPU PEAK EFFICIENCY: 33.80%

Acknowledgements
» Supported by the Clinical and Translational Science Awards (CTSA) grant

UL1TR004419 from the National Center for Advancing Translational
Sciences, National Institutes of Health.

CTS Clinical & Translational ©
Science Awards

Last but not Least

Got a problem”? Need a program installed? Send an email to:

hpchelp@hpc.mssm.edu

