
Introduction to GPU/AI resources on Minerva

Minerva Scientific Computing Environment

https://labs.icahn.mssm.edu/minervalab

Hyung Min Cho, PhD

The Minerva HPC Team

September 26, 2025

Outline

● What is GPU?

● GPU resources on Minerva

● User GPU Software Environment on Minerva

● Run GPU jobs in LSF

2

What is GPU?

● A graphics processing unit (GPU) is a specialized electronic circuit initially

designed to accelerate computer graphics and image processing.

● GPUs can be used across a wide range of compute-intensive applications:

○ AI/Machine Learning

○ Simulations

○ Professional visualization

○ Gaming

CPU vs GPU

reference

4

CPU vs GPU

CPU GPU

Function Generalized component that handles main processing

functions of a server

Specialized component that excels at parallel

computing

Processing Designed for serial instruction processing Designed for parallel instruction processing

Design Fewer, more powerful cores, low latency More cores than CPUs, but less powerful than CPU

cores, high throughput

DOI:10.1117/12.892282

https://aws.amazon.com/compare/the-difference-between-gpus-cpus/#:~:text=The%20CPU%20handles%20all%20the,and%20finish%20them%20in%20parallel.
http://dx.doi.org/10.1117/12.892282

GPU resources on Minerva

● GPU resources on Minerva

○ Current:

■ Interactive queue (1 GPU node)

■ gpu queue for batch (74 GPU nodes)

■ 316 GPUs in total

GPU model V100 A100 A100-80GB H100 H100-NVlink L40S

of nodes 12 8 2 2 47 4

GPU card/node 4 4 4 4 4 8

CPU cores 32 48 64 64 96 96

host memory 384 GB 384 GB 2 TB 512 GB 1.5 TB 1.5 TB

GPU memory 16 GB 40 GB 80 GB 80 GB 80 GB 48 GB

User GPU Software Environment - Major packages

OS: Rocky 9.4 with glibc-2.34(GNU C library) available

● Packages with GPU support:

○ Schrödinger Suite, Amber tools, NAMD, Gromacs, Alpha Fold2, etc.

● AI tools with python/3.12.5

○ CuPy, cuDF, cuML, Numba, scikit-learn, Scanpy, Squidpy, etc.

○ Minerva Python instruction

● AI tools with conda

○ MONAI, Rapids, NVFlare, tensorflow, pytorch, etc.

○ Minerva conda instruction

● AI tools with singularity

○ Holoscan, BioNeMo, Parabricks, DeepVariant, Alpha Fold3, etc.

○ Minerva singularity instruction

○ Minerva Singularity training

● Cuda toolkit versions up to 12.4.0

6

https://labs.icahn.mssm.edu/minervalab/documentation/python-and-jupyter-notebook/
https://labs.icahn.mssm.edu/minervalab/documentation/python-and-jupyter-notebook/
https://labs.icahn.mssm.edu/minervalab/documentation/conda/
https://labs.icahn.mssm.edu/minervalab/documentation/conda/
https://labs.icahn.mssm.edu/minervalab/documentation/running-container-apptainer-singularity/
https://labs.icahn.mssm.edu/minervalab/documentation/running-container-apptainer-singularity/
https://labs.icahn.mssm.edu/minervalab/resources/the-minerva-user-group-and-training-classes/
https://labs.icahn.mssm.edu/minervalab/resources/the-minerva-user-group-and-training-classes/

User Software Environment - Anaconda

Distribution ● https://labs.icahn.mssm.edu/minervalab/documentation/conda/

● To avoid incompatibilities with other python, clear your environment with module purge before loading Anaconda

$ml purge

$ml anaconda3/2024.06

$conda env list # get a list of the env available (Or $conda info --envs)

● User should install their own envs locally, (see more guide here)

➔ Use option -p PATH, --prefix PATH Full path to environment location (i.e. prefix).

$conda create python=3.x -p /sc/arion/work/gail01/conda/envs/myenv

$conda env create -p myenv -f environment.yml

➔ Set envs_dirs and pkgs_dirs in .condarc file, specify

directories in which environments and packages are located

$conda create -n myenv python=3.x

● Set conda base auto-activation false

conda config --set auto_activate_base false

More at Conda config guide

7

$ cat ~/.condarc file

envs_dirs:

- /sc/arion/work/gail01/conda/envs

pkgs_dirs:

- /sc/arion/work/gail01/conda/pkgs

conda config --set auto_activate_base false

https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html
https://docs.conda.io/projects/conda/en/latest/user-guide/configuration/use-condarc.html

User Software Environment: Lmod
> 1000 modules, and different versions are supported on Minerva

Lmod Software Environment Module system implemented:

● Search for module: $module avail or $ module spider

Check all available R versions $ ml spider R

…….R/3.3.1, R/3.4.0-beta, R/3.4.0, R/3.4.1, R/3.4.3_p, R/3.4.3, R/3.5.0, R/3.5.1_p, R/3.5.1, R/3.5.2, R/3.5.3

● To check the detailed PATH setting in module files: $ml show R

● Load module: $ml python or $module load python or $ml python/3.12.5 (for a specific version)

● Unload module $ml -gcc or $module unload gcc

● List loaded modules: $ml or $module list

● Purge ALL loaded modules $ ml purge

● Autocompletion with tab

● More at:

○ Minerva Lmod guide
○ Lmod user guide

8

https://labs.icahn.mssm.edu/minervalab/documentation/software-environment-lmod/
https://labs.icahn.mssm.edu/minervalab/documentation/software-environment-lmod/
https://lmod.readthedocs.io/en/latest/010_user.html
https://lmod.readthedocs.io/en/latest/010_user.html

Ollama
● Ollama is a platform that enables users to interact with Large Language Models

(LLMs) via an Application Programming Interface (API)

https://github.com/ollama/ollama

● It is a powerful tool for generating text, answering questions, and performing

complex natural language processing tasks. It provides access to various fine-tuned

LLMs.

● We provide an Ollama wrapper script that allows you to start an Ollama server on

Minerva’s compute node and access it from your local machine through an API

endpoint:

https://labs.icahn.mssm.edu/minervalab/documentation/ollama/

https://github.com/ollama/ollama
https://labs.icahn.mssm.edu/minervalab/documentation/ollama/

Interactive access to GPU resources
● Set up an interactive environment on compute nodes

● Useful for testing and debugging jobs

● Interactive, gpu, gpuexpress can be specified for -q.

● -Is: Interactive terminal/shell

● -XF: X11 forwarding

● /bin/bash : the shell to use

● If GPU model flag is not specified, your job will start on the earliest available GPU nodes.

● GPU option specification:

○ V100: -R v100

○ A100: -R a100

○ A100-80G: -R a10080g

○ H100: -R h10080g

○ NVLinked H100: -R h100nvl

○ L40S: -R l40s

bsub -P acc_hpcstaff -q gpu -n 4 -W 2:00 -R rusage[mem=4000] -R span[hosts=1] -gpu num=1 -R v100 -XF -Is /bin/bash

Minerva LSF queues with GPUs

Queue structure in Minerva

Queue Wall time limit

interactive

(Dedicated to interactive jobs)

12 hours

gpu 6 days/144 hours

gpuexpress 15 hours

bhosts

● bhosts queue_name

bhosts

● bhosts -R gpu_model

Batch job submission example
$ cat myfirst.lsf

#!/bin/bash

#BSUB -J myfirstjob # Job name

#BSUB -P acc_hpcstaff # REQUIRED; To get allocation account,

type “mybalance”

#BSUB -q premium # queue; default queue is

premium

#BSUB -n 1 # number of compute

cores (job slots) needed, 1 by default

#BSUB -W 6:00 # REQUIRED; walltime in

HH:MM

#BSUB -R rusage[mem=4000] # 4000 MB of memory request per “-n”;

3000 MB by default

#BSUB -oo %J.stdout # output log (%J : JobID)

#BSUB -eo %J.stderr # error log

#BSUB -L /bin/bash # Initialize the execution

environment

ml gcc # Commands

that you need to run

cd /sc/arion/work/MyID/my/job/dir/

../mybin/serial_executable < testdata.inp > results.log

$ bsub < myfirst.lsf

Job <87426883> is submitted to queue <premium>.

GPGPU - batch jobs
#BSUB -q gpu

#BSUB -n Ncpu

#BSUB -gpu num=4

#BSUB -R a100
#BSUB -R span[hosts=1]

module purge
module load anaconda3 (or 2)

module load cuda
source activate tfGPU

python -c "import tensorflow as tf"

submit to gpu queue

Ncpu is 1~48 on A100

request 4 GPUs per node on A100 node

#
request all gpu cards on the same node

to access tensorflow

to access the drivers and supporting
subroutines

GPGPU - batch jobs (continue)

● LSF will set CUDA_VISIBLE_DEVICES to the list of GPU cards assigned to the job.

E.g: 2,1,3 Most standard packages honor these assignments

○ DO NOT MANUALLY CHANGE THE VALUE OF CUDA_VISIBLE_DEVICES.

● Multiple GPU cards can be requested across different GPU nodes

#BSUB -q gpu

#BSUB -n 8

#BSUB -R span[ptile=2]
#BSUB -R h100nvl
#BSUB -gpu num=2

submit to gpu queue

8 compute cores requested
2 cores per node, so 4 nodes in total requested
request specified gpu node h100nvl

2 GPUs requested per node

Note that 2 GPU cards will be reserved on each of 4 nodes for your job. If your job

cannot /does not run in distributed mode, you will still lock these resources on the nodes

that you are not using and prevent others from being dispatched to those node.

CUDA_VISIBLE_DEVICES may be defined differently on each of the nodes allocated to

your job.

GPGPU - Local SSD
● Make your own directory under /ssd and direct your temporary files there.

● Clean up your temporary files after completion.

#BSUB -q gpu

#BSUB -gpu num=2

#BSUB -R a100

#BSUB -R span[hosts=1]

#BSUB -E "mkdir /ssd/YourID_$LSB_JOBID"

#BSUB -Ep "rm -rf /ssd/YourID_$LSB_JOBID"

A100 1.8 TB SATA SSD

A100-80GB 7.0 TB NVMe PCIe SSD

H100 3.84 TB NVMe PCIe SSD

L40S 3.84 TB NVMe PCIe SSD

nvidia-smi
● A monitoring and management command line utility, nvidia-smi

● Only available on nodes with GPUs during job execution

Minerva Ticket Submission

● Send an email to: hpchelp@hpc.mssm.edu to start a ticket.

● Information to include:

○ The error message or the location of the log file on Minerva.

■ use command “pwd” to check the current working directory.

○ All the commands you used to get the error message.

○ The location of the scripts used and how did you run the script.

○ Which node.

■ yuj25@li04e04

○ The job ID and location of the job script.

■ Job <123456789> is submitted to queue <premium>.

● Please do not include any “<” in the email.

19

mailto:hpchelp@hpc.mssm.edu

Friendly Reminder
● Never run jobs on login nodes

○ For file management, coding, compilation, etc., purposes only

● Never run jobs outside LSF

○ Fair sharing

○ Scratch disk not backed up, efficient use of limited resources

○ Job temporary dir configured to /local/JOBS instead of /tmp.

● WE DO NOT BACKUP USER FILES. PLEASE ARCHIVE YOUR IMPORTANT FILES.

● Follow us by visiting https://labs.icahn.mssm.edu/minervalab

● Acknowledge Scientific Computing at Mount Sinai and NIH funding in your publications

with the template https://labs.icahn.mssm.edu/minervalab/policies/acknowledge-

scientific-computing-at-mount-sinai/

https://labs.icahn.mssm.edu/minervalab

New Large-Scale Empire AI GPUs available for Mount Sinai Researchers

Empire AI is a consortium of ten New York State institutions with support from New York State, a shared computing

facility for artificial intelligence (AI) and high-performance computing (HPC) technologies in New York.

Empire AI is deploying large-scale GPU clusters in phases over 10 years.

The first Alpha system has been in production since Oct. 2024. The second Beta system will be in production in Dec.

2025. hardware details are described here.

How to onboard your projects to Empire AI?

1. To access, Mount Sinai PIs must agree no sensitive data will be transferred to Empire AI cluster by submitting the

form at https://redcap.link/EAI-DUA

2. After the above form received, you will be contacted with instructions for Empire AI project onboarding

Questions?

1. If you have general questions about this Empire AI resources, please open a ticket at hpchelp@hpc.mssm.edu for

now.

2. All future ticket and communication will go via Empire AI ticketing system at support@empireai.edu.

3. We are planning a Town Hall on Empire AI, scheduled for October 10 at 12:00 PM (noon). Will announce details

later.

https://www.empireai.edu/
https://empireai.freshdesk.com/a/solutions/articles/157000363466
https://redcap.link/EAI-DUA
https://redcap.link/EAI-DUA
https://redcap.link/EAI-DUA

Acknowledgements

▶ Supported by the Clinical and Translational Science Awards (CTSA) grant

UL1TR004419 from the National Center for Advancing Translational

Sciences, National Institutes of Health.

22

Last but not Least

▶ Got a problem? Need a program installed? Send an email to:

hpchelp@hpc.mssm.edu
23

Thank you!

	Slide 1: Introduction to GPU/AI resources on Minerva
	Slide 2: Outline
	Slide 3: What is GPU?
	Slide 4: CPU vs GPU
	Slide 5: GPU resources on Minerva
	Slide 6: User GPU Software Environment - Major packages
	Slide 7: User Software Environment - Anaconda Distribution
	Slide 8: User Software Environment: Lmod
	Slide 9: Ollama
	Slide 10: Interactive access to GPU resources
	Slide 11: Minerva LSF queues with GPUs
	Slide 12: bhosts
	Slide 13: bhosts
	Slide 14: Batch job submission example
	Slide 15: GPGPU - batch jobs
	Slide 16: GPGPU - batch jobs (continue)
	Slide 17: GPGPU - Local SSD
	Slide 18: nvidia-smi
	Slide 19: Minerva Ticket Submission
	Slide 20: Friendly Reminder
	Slide 21: New Large-Scale Empire AI GPUs available for Mount Sinai Researchers
	Slide 22: Acknowledgements
	Slide 23: Last but not Least
	Slide 24: Thank you!

