Accelerating Biomedical Data Science with

GPUs: Practical Approaches and Tools

Minerva Scientific Computing Environment

https://labs.icahn.mssm.edu/minervalab

S M Shamimul Hasan, Ph.D.
The Minerva HPC Team

A

March 6, 2025 feahn

School of
Medicine at
Mount
Sinai

Outline

» GPU Architecture Fundamentals
» Ways to Accelerate with GPUs
— Application-Based Solutions
— GPU-Optimized Libraries
— OpenACC Directives
— CUDA Programming

— Standard Language Parallelism

Graphics Processing Unit (GPU) Architecture Fundamentals

» GPUs are equipped with thousands of smaller, efficient cores that can
perform simple tasks in parallel

» Key Architectural Components:

— Streaming Multiprocessors (SMs)

* The core computational units of a GPU
« Each SM contains multiple CUDA cores, responsible for parallel data
processing

« SMs have their own L1 cache to store frequently accessed data and
shared memory for fast data sharing between threads

« Warp scheduling: SMs execute instructions in parallel, typically in groups
of 32 threads (warps), which helps maximize throughput

— L2 Cache
« Shared by all SMs, which improves data access efficiency when multiple
SMs need the same data https://docs.nvidia.com/deeplearning/perf
. . ormance/dl-performance-gpu-background
— High-Bandwidth DRAM /index.html

* Used for storing data

+ Data is fetched from DRAM to SMs via the L2 and L1 caches to optimize
memory bandwidth usage 3
/%

GPU Architecture Fundamentals

» Multiply-Add Operations:

— One of the most frequent operations in neural networks is multiply-add, used
to compute dot products in fully-connected and convolutional layers

— GPUs are optimized for these operations, with each multiply-add operation
counting as two floating-point operations (FLOPs). Modern GPUs can process
millions to billions of these operations per second, making them ideal for Al and
machine learning applications that require high computational throughput

» lensor Cores and CUDA Cores:

— Tensor Cores (introduced in Volta architecture) are specialized units for
accelerating matrix multiplications, critical for machine learning

— CUDA Cores handle general-purpose computing tasks when operations do not
fit the matrix multiplication model, such as element-wise operations

Ways to Accelerate with GPUs

Application-Based Solutions

v

— Directly leverage pre-built applications for immediate results
» GPU-Optimized Libraries

— Utilize high-performance libraries for seamless acceleration
» OpenACC Directives

— Simplify code modifications to accelerate existing applications easily
» CUDA Programming

— Gain maximum performance through custom GPU code development
» Standard Language Parallelism

— Flexibly integrate GPU acceleration using standard parallelism techniques

Ways to Accelerate with GPUs:
Application-Based Solutions

Key Applications Across Industries

Industry

Popular GPU-Accelerated Applications

Artificial Intelligence

PyTorch, MXNet, TensorFlow, Caffe, Keras, Scikit-learn, ONNX, DeepStream

Climate & Weather

Cosmos, Gales, WRF, MPAS, NEMS, RegCM, GEM, ICON

Computational Finance

O-Quant Options Pricing, Murex, MISYS, Numerix, GPUdb, RiskVal, CuQuant

Data Science & Analytics

Anaconda, H20, OmniSci, RAPIDS, Dask, XGBoost, TensorRT, cuML

Federal Defense & Security

ArcGIS Pro, EVNI, SocetGXP, Cylance, FaceControl, Raytheon, Harris Geospatial, TensorVision

Life Sciences

Amber, LAMMPS, GROMACS, NAMD, Relion, VASP, AlphaFold, SCHRODINGER

Manufacturing & Engineering

Ansys Fluent, Abaqus SIMULIA, AutoCAD, CST Studio Suite, Altair, Simcenter, OpenFOAM,
NASTRAN

Media & Entertainment

DaVinci Resolve, Premiere Pro CC, Redshift Renderer, Autodesk Maya, Blender, Nuke, Unreal
Engine, 3ds Max

Medical Imaging

Aidoc, PowerGrid, RadiAnt, NVIDIA Clara, Arterys, iCAD, Visage, Philips IntelliSpace

Oil & Gas

Echelon, RTM, SPECfem3D, Paradigm, Schlumberger Eclipse, PetroMod, JewelSuite, GeoTeric

Retail

Everseen, Deep North, Third Eye Labs, AWM, Malong, Clarifai, Antuit, Google Cloud Al

Supercomputing & HPC

Chroma, GTC, MILC, QUDA, XGC, HPL, NWChem, VMD, BerkeleyGW

https://www.nvidia.com/en-us/accelerated-applications/

Performance Gains of Standard Benchmarks: A100 vs Dual CPU

Application Speedup on A100 vs Dual CPU
Amber 13x — 39x
GROMACS 6Xx — 9x
LAMMPS 5x — 18x
NAMD 6x — 8x
Relion 4x — 5x
Chroma 32x
GTC 14x
MILC 32x
SPECfem3D 29x
FUN3D 13x

https://labs.icahn.mssm.edu/minervalab/wp-content/uploads/sites/342/2024/05/FiveWays-HealthCare-April2024 .pdf

https://developer.nvidia.com/hpc-application-performance

NVIDIA Parabricks for Alignment & Variant Calling

) BWA-MEM : ‘

Sort BAM

Mark duplicates

FastQ
STAR

BASR .

BAM/CRAM

Gold Standard Processing and Quality Control

BAM Metrics

Collect multiple metrics

BAM2FQ

BAM/CRAM

High-Accuracy Variant Calling

DeepVariant HaplotypeCaller
Mutect? STAR-Fusion
GenotypeGVCF IndexGYCF

:

https://developer.nvidia.com/blog/new-research-highlights-speed-and-cost-savings-of-clara-parabricks-for-genomic-analyses/

CFlgVCF

NVIDIA Parabricks for Alignment & Variant Calling
» Alignment (BWA-MEM, Minimap2, STAR)
— GPU: 11 minutes | CPU: ~4 hours
— Input: FastQ files

» Gold Standard Processing & Quality Control (Sort BAM, Mark
Duplicates, BQSR)

— GPU: 6 minutes | CPU: ~9 hours
— Metrics: BAM Metrics, Collect Multiple Metrics
— Input/Output: BAM/CRAM

» High-Accuracy Variant Calling (DeepVariant, HaplotypeCaller,
Mutect2)

— GPU: 4-45 minutes | CPU: ~16-31 hours
— Output: VCF/gVCEF files

https://labs.icahn.mssm.edu/minervalab/wp-content/uploads/sites/342/2024/05/FiveWays-HealthCare-April2024.pdf
B

NVIDIA BioNeMo

» NVIDIA BioNeMo is a generative Al platform for drug discovery that simplifies and
accelerates the training of models on proprietary data, ensuring easy, scalable
model deployment for drug discovery applications

» Key Features:

— LLM for Proteins & Molecules: BioNeMo leverages transformer-based LLMs for
biological and chemical data, including proteins, DNA, and small molecules

— Pretrained Models: Offers access to pre-trained Al models optimized for tasks such
as molecular property prediction, sequence generation, and structure-based drug
design

— Custom Model Training: Supports fine-tuning of models on proprietary datasets to
meet specific research goals

— Integration: Easily integrates with NVIDIA's GPU-accelerated platforms like Clara
and Al frameworks, offering massive parallel processing capabilities

https://www.nvidia.com/en-us/clara/bionemo/
11

NVIDIA BioNeMo

» MegaMoIBART: A model for generating and learning representations of
small molecules, useful in drug discovery and chemistry

» ESM-2nv 3B: A large protein model that predicts protein properties and
aids in structure prediction and functional annotation

» EquiDock DB5 Model: Predicts protein-protein interactions, essential for
understanding biological processes and drug design

» DiffDock Score Model: Generates ligand poses for drug-protein
interactions, improving drug discovery efforts

» Geneformer: Analyzes single-cell gene expression, advancing research in
personalized medicine and developmental biology

https://docs.nvidia.com/bionemo-framework/latest/

Ways to Accelerate with GPUs:
GPU-Optimized Libraries

NVIDIA HPC Software Development Kit (SDK)

Programming
Models

Standard C++ & Fortran

OpenACC & OpenMP

nvfortran

DEVELOPMENT

Core
Libraries

Math
Libraries

M cuSOLVER

M

Communication
Libraries

HPC-X
MPI

UX " SHMEM
SHARP HCOLL

NVSHMEM
NCCL

Systems

Compute

ANALYSIS

cuda-gdb

Device

https://labs.icahn.mssm.edu/minervalab/wp-content/uploads/sites/342/2024/05/FiveWays-HealthCare-April2024 .pdf

GPU-Accelerated Libraries

» Linear Algebra Libraries
— CcuBLAS: Basic Linear Algebra Subroutines
— CuBLASLt, cuBLASMp, cuBLASDx: Lightweight, multi-process, and device-side BLAS extensions

— CcUTENSOR, cuTENSORMg: Tensor linear algebra, including multi-GPU support
» Linear Solvers & Sparse Matrix Operations

— cUSOLVER, cuSOLVERMp: Dense and sparse direct solvers

— CcuSPARSE, cuSPARSELLt: Sparse matrix BLAS and lightweight variants
» Fourier Transform & Random Numbers

— CUFFT, cuFFTMp, cuFFTDx: Fast Fourier Transform variants

— cURAND: Random number generation
» Image, Video, and Compression

— NPP, NPP+: Image, video, and signal processing
— nvJPEG, nvdPEG2000, nvTIFF: JPEG and TIFF encode/decode

— nvCOMP: Data compression/decompression

https://github.com/nvidia/cudalibrarysamples

CuPy: GPU-Accelerated Python Library

Overview: Open-source library that accelerates

Python computations using NVIDIA CUDA for high
performance on GPUs

CuPy speedup over NumPy (Quoted from RAPIDS Al)
I Array Size 800 VB [l Array Size 8 MB

Performance: Achieves up to 100x speedups in
tasks like linear algebra, deep learning, and random
number generation

Speedup
N
o

NumPy/SciPy Compatible: Functions as a drop-in

replacement for NumPy and SciPy with minimal code 10
changes °

. 2
Custom Kernels: Allows easy creation and 1
compilation of custom CUDA kernels for optimized ™ ?i‘we\‘\o‘“g s %::;\@\oa“"“ 9 s

: W (0

operations i °
Applications: Ideal for data science, machine https://cupy.dev/

learning, and scientific computing

CuPy: GPU-Accelerated Python Library

NumPy

impo
size

rt

= np.
np.
= np.

numpy as np
10000

random.rand (size,
random.rand (size,
dot (A, B)

size)
size)

CuPy

impo
size

rt

= cp.
= cp.

.random.rand (size,

cupy as cp

10000
random.rand(size, size)
size)

dot (A, B)

https://labs.icahn.mssm.edu/minervalab/wp-content/uploads/sites/342/2024/04/MountSinai_accelerated_general_data_science-compressed.pdf

cuNumeric: GPU-Accelerated NumPy Replacement

» Overview: cuNumeric is a drop-in replacement for
NumPy, designed to scale computations across
multiple GPUs and nodes without code changes.

» Key Features
— Full NumPy functionality with GPU acceleration

— Seamless integration with existing Python
workflows

— Leverages the Legate framework for distributed
computing
» Use Case: |deal for large-scale data processing

tasks in scientific computing, machine learning, and
Al

» Benefit: Significant performance gains in handling
complex numerical computations on large clusters

Weak Scaling of Richardson-Lucy Deconvolution on DGX SuperPOD

@ cuNumeric @ CuPy
100

o

Throughput {10*9 points/s)

1 2 4 8 16 32 64 128 256 512 1024

GPUs

https://developer.nvidia.com/cunumeric

RAPIDS

» RAPIDS is a collection of open-source software libraries and APIs that enables you to
run complete data science and analytics pipelines entirely on GPUs

Data Science and Al Applications

Accelerated Libraries

RAPIDS GPU Python and C++ Libraries

DataFrames ML Graph
cuDF cuML cuGraph

Hardware

O Cloud E=— Data Center Workstation

https://developer.nvidia.com/rapids

RAPIDS

Category CPU Libraries GPU Libraries (RAPIDS)

Data Processing Pandas cuDF
Machine Learning scikit-learn cuML
Graph Processing NetworkX cuGraph
Geospatial Data GeoPandas, SciPy cuSpatial
Signal Processing SciPy.signal cuSignal
Image Processing scikit-image cuCIM

20

cuDF

» A GPU-accelerated DataFrame
library

» Similar to pandas, but utilizes the
power of GPUs for enhanced
performance

» Part of the RAPIDS Al framework
developed by NVIDIA

» Designed for large-scale data
processing and analytics

» Installable via Conda or Pip

import cudf as pd
import numpy as np

Load a CSV file as a cuDF DataFrame
data gpu = pd.read csv("data/sample data.csv")

Generate some statistics
mean values = data gpu.mean ()
print ("Mean of each column:\n", mean values)

Filtering rows based on a condition
filtered data =
data gpul[data gpu['column name'] > 50]

Display filtered data
filtered data.head(5)

https://labs.icahn.mssm.edu/minervalab/wp-content/uploads/sites/342/2024/04/MountSinai_accelerated_general_data_science-compressed.pdf

21

CPU vs. GPU ETL Workf{lows
» Time Consuming ETL (Extract, Transform, Load) Steps (CPU-Powered)

— Configure ETL: Requires extensive configuration and manual work.
— Data Download & Preparation: Long hours waiting for data downloads
— Frequent Restarts: Restart workflows due to errors or missed steps

— Training Delays: Minimal time left for model training, mostly focusing on data preparation
» Accelerated ETL and Training (GPU-Powered):

— Fast Configuration: Rapid setup of ETL pipelines
— Optimized Data Handling: Handles datasets with increased speed

— Integrated Validation and Training: Time saved for comprehensive model training and
validation

— Reduced Rework: Minimized workflow restarts, leading to more efficient work cycles

» Takeaway: With GPU acceleration, data scientists spend significantly less time on
repetitive ETL tasks, shifting their focus to training, testing, and optimizing machine
learning models

22

cuML - GPU Machine Learning Algorithms
onegoy g

Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

_ Hierarchical Density-Based Spatial Clustering of Applications with Noise
Clustering (HDBSCAN)

K-Means

Single-Linkage Agglomerative Clustering
Principal Components Analysis (PCA)

.)) Incremental PCA
Dimensionality

Reduction Truncated Singular Value Decomposition (tSVD)
Uniform Manifold Approximation and Projection (UMAP)

Random Projection

https://github.com/rapidsai/cuml 23
B

cuML - GPU Machine Learning Algorithms
Cagoy | Agortm

Linear Regression

Linear Regression with Lasso or Ridge Regularization
ElasticNet Regression

Linear M.odels for o LARS Regression
Regression or Classification

Logistic Regression
Naive Bayes

Stochastic Gradient Descent (SGD), Coordinate Descent (CD),
and Quasi-Newton (QN) (including L-BFGS and OWL-QN) solvers
for linear models

https://github.com/rapidsai/cuml

24

cuML - GPU Machine Learning Algorithms

Categor Cagoriom

Random Forest (RF) Classification

Random Forest (RF) Regression
Inference for decision tree-based models

Nonlinear Models for K-Nearest Neighbors (KNN) Classification

Regression or Classification
K-Nearest Neighbors (KNN) Regression

Support Vector Machine Classifier (SVC)

Epsilon-Support Vector Regression (SVR)

https://github.com/rapidsai/cuml

25

cuML - GPU Machine Learning Algorithms

Category Cagoritm

Preprocessing

Time Series

Model Explanation

Standardization, or mean removal and variance scaling /
Normalization / Encoding categorical features / Discretization /
Imputation of missing values / Polynomial features generation / and
coming soon custom transformers and non-linear transformation

Holt-Winters Exponential Smoothing
Auto-regressive Integrated Moving Average (ARIMA)
SHAP Kernel Explainer

SHAP Permutation Explainer

https://github.com/rapidsai/cuml

26

Numba

» Numba is a just-in-time (JIT) compiler that translates Python code to machine code at runtime,
significantly improving performance for numerical computations

» Key Features
— JIT Compilation: Numba compiles Python functions at runtime for fast performance
— Easy Integration: Works seamlessly with NumPy and pandas

— Decorator-Based: Use the @jit decorator to accelerate Python functions without code
changes

— Support for GPUs: Numba can target NVIDIA GPUs for parallel computation (@cuda.jit)

» Benefits
— Speed: Offers speed-ups comparable to compiled languages like C

— Ease of Use: No need to rewrite Python code in C or other languages to get better
performance

— Parallelization: Enables easy parallel programming with features like GPU support

27

Numba

GPU
CPU from numba import cuda
from numba import jit o
@cuda.jit
@jit def vector add gpu(a, b, result):
def vector add(a, b): } =.cuda.gr1d(1)
n = len(a) if 1 < lel’l(a):
result = np.zeros (n) resultli] = af[i] + bli]
for i in range (n): _ _)
result[i] = af[i] + b[i] # Define grid and block size
return result threads per block = 256
blocks per grid = (len(a) + (threads per block - 1))
Vector addition on the CPU // threads_per block
result = vector add(a, b)
- # Launch kernel
vector add gpul[blocks per grid,

threads per block] (a, b, result)

https://labs.icahn.mssm.edu/minervalab/wp-content/uploads/sites/342/2024/04/MountSinai_accelerated_general_data_science-compressed.pdf
28

Medical Open Network for Artificial Intelligence (MONAI)

» Initiative by NVIDIA and King’s College London
» Built to create an inclusive Al research community for healthcare imaging
» Collaboration includes academic and industry leaders
» Provides open-source PyTorch-based frameworks for:

— Annotation, model building, training, deployment, and optimization
» Focus on reproducibility and collaboration
» Key components:

— MONAI Core: Training Al models in healthcare imaging

— MONAI Label: Smart image annotation

— MONAI Deploy SDK: Convert models into deployable Al applications

— MONAI Model Zoo: Pre-built medical imaging models

https://monai.io/
https://github.com/Project-MONAI
B

NVIDIA Holoscan

» NVIDIA Holoscan is the sensor processing platform that streamlines the
development and deployment of Al and high-performance computing (HPC)
applications for real-time insights

» Key Benefits

— Sensor Processing: Supports video capture, ultrasound research, and legacy medical
devices

— Low Latency: Holoscan SDK helps measure end-to-end latency for video processing

— Al Pipelines: Access Al reference pipelines for radar, high-energy light sources,
endoscopy, ultrasound, and other streaming video applications

» Use Cases

— Medical Devices: Real-time Al for surgery, helping clinical teams with patient-specific
decisions
— Edge Computing: Scalable Al solutions from surgery to satellites

https://www.nvidia.com/en-us/clara/holoscan/
30

NVIDIA FLARE

>

4

NVIDIA FLARE (NVIDIA Federated Learning
Application Runtime Environment) is a
domain-agnostic, open-source, and extensible
SDK for Federated Learning

Key Features:

Protects data
prevent reverse

=— Privacy-Preserving Algorithms:
privacy with algorithms that
engineering of model updates

— Distributed Multi-Party Collaboration: Enables Al
model development across diverse data sources
without sharing data

— Supports Popular ML/DL Frameworks: Integrates

seamlessly with frameworks like PyTorch,
TensorFlow, and more
— Extensible Management Tools: Offers SSL

certifications, admin console, and TensorBoard for
experiment monitoring

Management Tools

Provisioning Orchestration Monitoring

NVIDIA FLARE Runtime

Learner Configuration

Federated Specification

Authenticate, Train, Evaluate,
and Update Models

O PyTorch ' NumPy

M@NAT

Training Flows

Evaluation Flows

Learning Algorithms

B rersorfiow

Privacy Preserving Algorithms

https://developer.nvidia.com/flare

31

Ways to Accelerate with GPUs:
OpenACC Directives

>

>

OpenACC Directives

OpenACC is a directive-based programming
model for parallel computing, designed to make
performance-portable = code accessible to
scientists and engineers across various HPC
hardware platforms. It enables efficient
parallelization without the complexities of low-level
programming

Key Benefits:

— Simplified Code Parallelism: Use directives
to easily identify parallel regions

— Accelerator Ready: I|deal for many-core
GPUs and multicore CPUs

— Less Effort: Reduces development time and
complexity compared to CUDA or OpenCL

C

#pragma acc directive
clause]

{

// Code to be executed in parallel
}

[clause [,]

Fortran

!Sacc directive [clause [,] clause]
! Code to be executed in parallel

!Sacc end directive

https://labs.icahn.mssm.edu/minervalab/wp-content/uploads/sit
es/342/2024/05/FiveWays-HealthCare-April2024.pdf

33

SAXPY Example: SAXPY is “Single-Precision A times X Plus Y”

SAXPY inC

SAXPY in Fortran

void saxpy with offset(int n, float a,
float *x, float *restrict y, int offset)
{
#pragma acc kernels
for (int i1 = offset; 1 < n + offset; ++i)
{
y[i] = a * x[1i - offset] + yI[i]:;

// Perform SAXPY on 1M elements with an
offset of 1000

saxpy with offset(l << 20, 2.5, x, vy,
1000) ;

subroutine saxpy with offset(n, a, x, vy,
offset)

real :: x(:), y(:), a

integer :: n, i, offset

'Sacc kernels
do 1 = offset + 1, n + offset
y(i) = a * x(i - offset) + y (i)
end do
'Sacc end kernels

end subroutine saxpy with offset

I Perform SAXPY on 1M elements with an offset
of 1000

call saxpy with offset (2**20, 2.5, x, y, 1000)

https://labs.icahn.mssm.edu/minervalab/wp-content/uploads/sites/342/2024/05/FiveWays-HealthCare-April2024.pdf 34

Ways to Accelerate with GPUs:
CUDA Programming

CUDA Programming

» Whatis CUDA?

— CUDA (Compute Unified Device Architecture) is a parallel computing platform and
programming model developed by NVIDIA

— It enables developers to utilize the power of NVIDIA GPUs for general-purpose computing
» Key Features:

— Parallel Computing: CUDA allows thousands of threads to execute concurrently,
maximizing the utilization of the GPU.

— Heterogeneous Programming: Code can run on both the CPU (host) and GPU (device),
allowing for efficient division of tasks.

— Flexible Memory Management: CUDA provides various types of memory (global, shared,
constant) that can be optimized for different tasks.

» CUDA provides APls for C/C++, Fortran, Python, Julia

» CUDA-aware MPI implementations include OpenMPI, MVAPICH, Spectrum MPI,

and others 2
BN

CUDAC

void saxpy offset serial (int n,
float *x, float *y, int offset)
{

float a,

for (int i =
++1)

{

offset; 1 < n + offset;

y[i] = a * x[i - offset] + yl[i];

// Perform SAXPY on 1M elements with an
offset of 1000

saxpy offset serial (4096 * 256, 2.0, x,
1000) ;

Y

__global

void saxpy offset parallel (int n,
float *x, float *y, int offset)

{

int 1 = blockIdx.x * blockDim.x +
threadIldx.x + offset;
if (1 < n + offset) {
y[i] = a * x[1 - offset] + yI[i]:;

// Perform SAXPY on 1M elements with an
offset of 1000

saxpy offset parallel<<<4096, 256>>>(n,
2.0, x, y, 1000);

float a,

https://labs.icahn.mssm.edu/minervalab/wp-content/uploads/sites/342/2024/05/FiveWays-HealthCare-April2024.pdf

37

Ways to Accelerate with GPUs:
Standard Language Parallelism

Standard Language Programming

PROGRAMMING THE NVIDIA PLATFORM

CPU, GPU, and Network

ACCELERATED STANDARD LANGUAGES
ISO C++, ISO Fortran

INCREMENTAL PORTABLE OPTIMIZATION
OpenACC, OpenMP

PLATFORM SPECIALIZATION
CUDA

std::transform(par, x, x+n, y, y,
[=] (float x, float y){ return y +
a*x; }

)s

do concurrent (i = 1:n)

y(i) = y(i) + a*x(i)
enddo

import cunumeric as np

#pragma acc data copy(x,y) {
std: :transform(par, x, x+n, y, y,
[=] (float x, float y) {
return y + a*x;
});
}
#pragma omp target data map(x,y) {
std::transform(par, x, x+n, y, Y,
[=] (float x, float y) {
return y + a*x;

__global
void saxpy(int n, float a,
float *x, float *y) {
int i = blockIdx.x*blockDim.x +
threadIdx.x;
if (i < n) yl[i] += a*x[i];
}

int main(void) {

cudaMemcpy (d_x, x, ...);
cudaMemcpy(d y, ¥, -...);

saxpy<<< (N+255) /256 ,256>>>(...);

;ef saxpy(a, x, y): H;
y[:] += a*x i" cudaMemcpy (y, 4 Vv, ...):
ACCELERATION LIBRARIES
Core Math Communication Data Analytics Al Quantum

https://developer-blogs.nvidia.com/wp-content/uploads/2022/01/Fig-1-Programming-the-Nvidia-Platform-2.png

39

Standard Language Programming

Lulesh Hydronynamics Mini-app

static inline
void CalcHydroConstraintForElems(Domain &domain, Index_t length,

Index_t *regElemlist, Real_t dvovmax, Real_t& dthydro)
{
g STANDARD C++

const Index_t threads = omp_get _max_threads();
Index_t hydro_elem_per_thread[threads];
Real_t dthydro_per_thread[threads];

#else
Index_t threads = 1;
Index_t hydro_elem_per_thread[1]; » Composable, compact and elegant
Real_t dthydro_per_thread[1];

wendif

#pragma omp parallel firstprivate(length, dvovmax)
{

Real_t dthydro_tmp = dthydro ; Vs ISO Standard

Index_t hydro_elem = -1 ;
wif _OPENMP :

Index_t thread_num = omp_get_thread_num(); ” Portable - NVC++, g++, 1CpC, MSVC’ b
#else

Index_t thread_num = 8;
tendif
#pragma omp for

for (Index_t i =@ ; i < length ; ++i) {

Index_t indx = regElemlist[i] ;

» Easy to read and maintain

if (domain.vdov(indx) != Real _t(®.)) {
Real_t dtdvov = dvovmax / (FABS(domain.vdov(indx))+Real t(1.e-20)) ; static inline

void CalcHydroConstraintForElems(Domain &domain, Index_t length,

16, (dthydro_ tap > dtdvovi) Index_t *regElemlist, Real_t dvovmax, Real_t &dthydro)

dthydro_tmp = dtdvov ;
hydro_elem = indx ;
dthydro = std::transform_reduce(
} std::execution::par, counting_iterator(®), counting_iterator(length),
dthydro, []J(Real_t a, Real t b) { return a < b ? a : b; },

}
dthydro_per_thread[thread_num] = dthydro_tmp ; [_ &domain] (Index_t i)
) i

hydro_elem_per_thread[thread_num] = hydro_elem ;

}
for (Indax_t 1 = 1; i < threads; ++1) { - Index_t indx = regElemlist[il;
if(dthydro_per_thread[i] < dthydro_per_thread[®]) { if (domain.vdov(indx) == Real_t(e.e)) {
dthydro_per_thread[8] = dthydro_per_thread[i]; return std::numeric_limits<Real t>::max();
hydro_elem_per_thread[@] = hydro_elem_per_thread[i]; } else {
} } return dvovmax / (std::abs(domain.vdov(indx)) + Real _t(1.e-20));
if (hydro_elem_per_thread[®] I= -1) {
dthydro = dthydro_per_thread[2] ; 13 H
}

! C++ with OpenMP Standard C++

https://developer-blogs.nvidia.com/wp-content/uploads/2022/01/Fig-2-Standard-C-1.png

40

User GPU Software Environment - Major packages

OS: Rocky 9.4 with glibc-2.34(GNU C library) available

e Packages with GPU support:
o Schrodinger Suite, Amber tools, NAMD, Gromacs, Alpha Fold2, etc.
e Al tools with python/3.12.5
o CuPy, cuDF, cuML, Numba, scikit-learn, Scanpy, Squidpy, etc.
o Minerva Python instruction
e Al tools with conda
o MONAI, Rapids, NVFlare, tensorflow, pytorch, etc.
o Minerva conda instruction
e Al tools with singularity
o Holoscan, BioNeMo, Parabricks, DeepVariant, etc.
o Minerva singularity instruction
o Minerva Singularity training
e Cuda toolkit versions up to 12.4.0
e Nsight Systems

41

https://labs.icahn.mssm.edu/minervalab/documentation/python-and-jupyter-notebook/
https://labs.icahn.mssm.edu/minervalab/documentation/conda/
https://labs.icahn.mssm.edu/minervalab/documentation/running-container-singularity/
https://labs.icahn.mssm.edu/minervalab/resources/the-minerva-user-group-and-training-classes/

Important Reminder

» Need assistance? Feel free to contact us at:

hpchelp@hpc.mssm.edu

42

Acknowledgements
» Supported by the Clinical and Translational Science Awards (CTSA) grant

UL1TR004419 from the National Center for Advancing Translational
Sciences, National Institutes of Health.

CTS Clinical & Translational ©
Science Awards

43

