
Accelerating Biomedical Data Science with
GPUs: Practical Approaches and Tools

Minerva Scientific Computing Environment
https://labs.icahn.mssm.edu/minervalab

S M Shamimul Hasan, Ph.D.
The Minerva HPC Team

March 6, 2025

Outline
▶ GPU Architecture Fundamentals

▶ Ways to Accelerate with GPUs

– Application-Based Solutions

– GPU-Optimized Libraries

– OpenACC Directives

– CUDA Programming

– Standard Language Parallelism

2

Graphics Processing Unit (GPU) Architecture Fundamentals
▶ GPUs are equipped with thousands of smaller, efficient cores that can

perform simple tasks in parallel
▶ Key Architectural Components:

– Streaming Multiprocessors (SMs)
• The core computational units of a GPU

• Each SM contains multiple CUDA cores, responsible for parallel data
processing

• SMs have their own L1 cache to store frequently accessed data and
shared memory for fast data sharing between threads

• Warp scheduling: SMs execute instructions in parallel, typically in groups
of 32 threads (warps), which helps maximize throughput

– L2 Cache

• Shared by all SMs, which improves data access efficiency when multiple
SMs need the same data

– High-Bandwidth DRAM
• Used for storing data

• Data is fetched from DRAM to SMs via the L2 and L1 caches to optimize
memory bandwidth usage

https://docs.nvidia.com/deeplearning/perf
ormance/dl-performance-gpu-background
/index.html

3

GPU Architecture Fundamentals

▶ Multiply-Add Operations:
– One of the most frequent operations in neural networks is multiply-add, used

to compute dot products in fully-connected and convolutional layers

– GPUs are optimized for these operations, with each multiply-add operation
counting as two floating-point operations (FLOPs). Modern GPUs can process
millions to billions of these operations per second, making them ideal for AI and
machine learning applications that require high computational throughput

▶ Tensor Cores and CUDA Cores:
– Tensor Cores (introduced in Volta architecture) are specialized units for

accelerating matrix multiplications, critical for machine learning

– CUDA Cores handle general-purpose computing tasks when operations do not
fit the matrix multiplication model, such as element-wise operations

4

Ways to Accelerate with GPUs

▶ Application-Based Solutions
– Directly leverage pre-built applications for immediate results

▶ GPU-Optimized Libraries
– Utilize high-performance libraries for seamless acceleration

▶ OpenACC Directives
– Simplify code modifications to accelerate existing applications easily

▶ CUDA Programming
– Gain maximum performance through custom GPU code development

▶ Standard Language Parallelism
– Flexibly integrate GPU acceleration using standard parallelism techniques

5

Ways to Accelerate with GPUs:
Application-Based Solutions

6

Key Applications Across Industries
Industry Popular GPU-Accelerated Applications

Artificial Intelligence PyTorch, MXNet, TensorFlow, Caffe, Keras, Scikit-learn, ONNX, DeepStream

Climate & Weather Cosmos, Gales, WRF, MPAS, NEMS, RegCM, GEM, ICON

Computational Finance O-Quant Options Pricing, Murex, MISYS, Numerix, GPUdb, RiskVal, CuQuant

Data Science & Analytics Anaconda, H2O, OmniSci, RAPIDS, Dask, XGBoost, TensorRT, cuML

Federal Defense & Security ArcGIS Pro, EVNI, SocetGXP, Cylance, FaceControl, Raytheon, Harris Geospatial, TensorVision

Life Sciences Amber, LAMMPS, GROMACS, NAMD, Relion, VASP, AlphaFold, SCHRODINGER

Manufacturing & Engineering
Ansys Fluent, Abaqus SIMULIA, AutoCAD, CST Studio Suite, Altair, Simcenter, OpenFOAM,

NASTRAN

Media & Entertainment
DaVinci Resolve, Premiere Pro CC, Redshift Renderer, Autodesk Maya, Blender, Nuke, Unreal

Engine, 3ds Max

Medical Imaging Aidoc, PowerGrid, RadiAnt, NVIDIA Clara, Arterys, iCAD, Visage, Philips IntelliSpace

Oil & Gas Echelon, RTM, SPECfem3D, Paradigm, Schlumberger Eclipse, PetroMod, JewelSuite, GeoTeric

Retail Everseen, Deep North, Third Eye Labs, AWM, Malong, Clarifai, Antuit, Google Cloud AI

Supercomputing & HPC Chroma, GTC, MILC, QUDA, XGC, HPL, NWChem, VMD, BerkeleyGW
https://www.nvidia.com/en-us/accelerated-applications/ 7

Performance Gains of Standard Benchmarks: A100 vs Dual CPU

Application Speedup on A100 vs Dual CPU

Amber 13x – 39x

GROMACS 6x – 9x

LAMMPS 5x – 18x

NAMD 6x – 8x

Relion 4x – 5x

Chroma 32x

GTC 14x

MILC 32x

SPECfem3D 29x

FUN3D 13x
https://labs.icahn.mssm.edu/minervalab/wp-content/uploads/sites/342/2024/05/FiveWays-HealthCare-April2024.pdf
https://developer.nvidia.com/hpc-application-performance

8

NVIDIA Parabricks for Alignment & Variant Calling

https://developer.nvidia.com/blog/new-research-highlights-speed-and-cost-savings-of-clara-parabricks-for-genomic-analyses/

9

NVIDIA Parabricks for Alignment & Variant Calling
▶ Alignment (BWA-MEM, Minimap2, STAR)

– GPU: 11 minutes | CPU: ~4 hours
– Input: FastQ files

▶ Gold Standard Processing & Quality Control (Sort BAM, Mark
Duplicates, BQSR)
– GPU: 6 minutes | CPU: ~9 hours
– Metrics: BAM Metrics, Collect Multiple Metrics
– Input/Output: BAM/CRAM

▶ High-Accuracy Variant Calling (DeepVariant, HaplotypeCaller,
Mutect2)
– GPU: 4-45 minutes | CPU: ~16-31 hours
– Output: VCF/gVCF files

10https://labs.icahn.mssm.edu/minervalab/wp-content/uploads/sites/342/2024/05/FiveWays-HealthCare-April2024.pdf

NVIDIA BioNeMo
▶ NVIDIA BioNeMo is a generative AI platform for drug discovery that simplifies and

accelerates the training of models on proprietary data, ensuring easy, scalable
model deployment for drug discovery applications

▶ Key Features:

– LLM for Proteins & Molecules: BioNeMo leverages transformer-based LLMs for
biological and chemical data, including proteins, DNA, and small molecules

– Pretrained Models: Offers access to pre-trained AI models optimized for tasks such
as molecular property prediction, sequence generation, and structure-based drug
design

– Custom Model Training: Supports fine-tuning of models on proprietary datasets to
meet specific research goals

– Integration: Easily integrates with NVIDIA’s GPU-accelerated platforms like Clara
and AI frameworks, offering massive parallel processing capabilities

https://www.nvidia.com/en-us/clara/bionemo/

11

NVIDIA BioNeMo

▶ MegaMolBART: A model for generating and learning representations of
small molecules, useful in drug discovery and chemistry

▶ ESM-2nv 3B: A large protein model that predicts protein properties and
aids in structure prediction and functional annotation

▶ EquiDock DB5 Model: Predicts protein-protein interactions, essential for
understanding biological processes and drug design

▶ DiffDock Score Model: Generates ligand poses for drug-protein
interactions, improving drug discovery efforts

▶ Geneformer: Analyzes single-cell gene expression, advancing research in
personalized medicine and developmental biology

https://docs.nvidia.com/bionemo-framework/latest/

12

Ways to Accelerate with GPUs:
GPU-Optimized Libraries

13

NVIDIA HPC Software Development Kit (SDK)

https://labs.icahn.mssm.edu/minervalab/wp-content/uploads/sites/342/2024/05/FiveWays-HealthCare-April2024.pdf

14

GPU-Accelerated Libraries
▶ Linear Algebra Libraries

– cuBLAS: Basic Linear Algebra Subroutines

– cuBLASLt, cuBLASMp, cuBLASDx: Lightweight, multi-process, and device-side BLAS extensions

– cuTENSOR, cuTENSORMg: Tensor linear algebra, including multi-GPU support
▶ Linear Solvers & Sparse Matrix Operations

– cuSOLVER, cuSOLVERMp: Dense and sparse direct solvers

– cuSPARSE, cuSPARSELt: Sparse matrix BLAS and lightweight variants
▶ Fourier Transform & Random Numbers

– cuFFT, cuFFTMp, cuFFTDx: Fast Fourier Transform variants

– cuRAND: Random number generation
▶ Image, Video, and Compression

– NPP, NPP+: Image, video, and signal processing

– nvJPEG, nvJPEG2000, nvTIFF: JPEG and TIFF encode/decode

– nvCOMP: Data compression/decompression

https://github.com/nvidia/cudalibrarysamples
15

CuPy: GPU-Accelerated Python Library
▶ Overview: Open-source library that accelerates

Python computations using NVIDIA CUDA for high
performance on GPUs

▶ Performance: Achieves up to 100x speedups in
tasks like linear algebra, deep learning, and random
number generation

▶ NumPy/SciPy Compatible: Functions as a drop-in
replacement for NumPy and SciPy with minimal code
changes

▶ Custom Kernels: Allows easy creation and
compilation of custom CUDA kernels for optimized
operations

▶ Applications: Ideal for data science, machine
learning, and scientific computing

https://cupy.dev/

16

CuPy: GPU-Accelerated Python Library

import numpy as np
size = 10000
A = np.random.rand(size, size)
B = np.random.rand(size, size)
C = np.dot(A, B)

import cupy as cp
size = 10000
A = cp.random.rand(size, size)
B = cp.random.rand(size, size)
C = cp.dot(A, B)

NumPy CuPy

https://labs.icahn.mssm.edu/minervalab/wp-content/uploads/sites/342/2024/04/MountSinai_accelerated_general_data_science-compressed.pdf

17

cuNumeric: GPU-Accelerated NumPy Replacement
▶ Overview: cuNumeric is a drop-in replacement for

NumPy, designed to scale computations across
multiple GPUs and nodes without code changes.

▶ Key Features
– Full NumPy functionality with GPU acceleration

– Seamless integration with existing Python
workflows

– Leverages the Legate framework for distributed
computing

▶ Use Case: Ideal for large-scale data processing
tasks in scientific computing, machine learning, and
AI

▶ Benefit: Significant performance gains in handling
complex numerical computations on large clusters

https://developer.nvidia.com/cunumeric

18

RAPIDS
▶ RAPIDS is a collection of open-source software libraries and APIs that enables you to

run complete data science and analytics pipelines entirely on GPUs

https://developer.nvidia.com/rapids
19

RAPIDS

Category CPU Libraries GPU Libraries (RAPIDS)
Data Processing Pandas cuDF

Machine Learning scikit-learn cuML

Graph Processing NetworkX cuGraph

Geospatial Data GeoPandas, SciPy cuSpatial

Signal Processing SciPy.signal cuSignal

Image Processing scikit-image cuCIM

20

cuDF
▶ A GPU-accelerated DataFrame

library

▶ Similar to pandas, but utilizes the

power of GPUs for enhanced

performance

▶ Part of the RAPIDS AI framework

developed by NVIDIA

▶ Designed for large-scale data

processing and analytics

▶ Installable via Conda or Pip

import cudf as pd
import numpy as np

Load a CSV file as a cuDF DataFrame
data_gpu = pd.read_csv("data/sample_data.csv")

Generate some statistics
mean_values = data_gpu.mean()
print("Mean of each column:\n", mean_values)

Filtering rows based on a condition
filtered_data =
data_gpu[data_gpu['column_name'] > 50]

Display filtered data
filtered_data.head(5)

https://labs.icahn.mssm.edu/minervalab/wp-content/uploads/sites/342/2024/04/MountSinai_accelerated_general_data_science-compressed.pdf
21

CPU vs. GPU ETL Workflows
▶ Time Consuming ETL (Extract, Transform, Load) Steps (CPU-Powered)

– Configure ETL: Requires extensive configuration and manual work.

– Data Download & Preparation: Long hours waiting for data downloads

– Frequent Restarts: Restart workflows due to errors or missed steps

– Training Delays: Minimal time left for model training, mostly focusing on data preparation

▶ Accelerated ETL and Training (GPU-Powered):
– Fast Configuration: Rapid setup of ETL pipelines

– Optimized Data Handling: Handles datasets with increased speed

– Integrated Validation and Training: Time saved for comprehensive model training and
validation

– Reduced Rework: Minimized workflow restarts, leading to more efficient work cycles

▶ Takeaway: With GPU acceleration, data scientists spend significantly less time on
repetitive ETL tasks, shifting their focus to training, testing, and optimizing machine
learning models

22

cuML - GPU Machine Learning Algorithms
Category Algorithm

Clustering

Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

Hierarchical Density-Based Spatial Clustering of Applications with Noise
(HDBSCAN)

K-Means

Single-Linkage Agglomerative Clustering

Dimensionality
Reduction

Principal Components Analysis (PCA)

Incremental PCA

Truncated Singular Value Decomposition (tSVD)

Uniform Manifold Approximation and Projection (UMAP)

Random Projection
https://github.com/rapidsai/cuml 23

cuML - GPU Machine Learning Algorithms

Category Algorithm

Linear Models for
Regression or Classification

Linear Regression

Linear Regression with Lasso or Ridge Regularization

ElasticNet Regression

LARS Regression

Logistic Regression

Naive Bayes

Stochastic Gradient Descent (SGD), Coordinate Descent (CD),
and Quasi-Newton (QN) (including L-BFGS and OWL-QN) solvers
for linear models

https://github.com/rapidsai/cuml

24

cuML - GPU Machine Learning Algorithms

Category Algorithm

Nonlinear Models for
Regression or Classification

Random Forest (RF) Classification

Random Forest (RF) Regression

Inference for decision tree-based models

K-Nearest Neighbors (KNN) Classification

K-Nearest Neighbors (KNN) Regression

Support Vector Machine Classifier (SVC)

Epsilon-Support Vector Regression (SVR)

https://github.com/rapidsai/cuml

25

cuML - GPU Machine Learning Algorithms

Category Algorithm

Preprocessing

Standardization, or mean removal and variance scaling /
Normalization / Encoding categorical features / Discretization /
Imputation of missing values / Polynomial features generation / and
coming soon custom transformers and non-linear transformation

Time Series Holt-Winters Exponential Smoothing

Auto-regressive Integrated Moving Average (ARIMA)

Model Explanation SHAP Kernel Explainer

SHAP Permutation Explainer

https://github.com/rapidsai/cuml

26

Numba
▶ Numba is a just-in-time (JIT) compiler that translates Python code to machine code at runtime,

significantly improving performance for numerical computations
▶ Key Features

– JIT Compilation: Numba compiles Python functions at runtime for fast performance

– Easy Integration: Works seamlessly with NumPy and pandas

– Decorator-Based: Use the @jit decorator to accelerate Python functions without code
changes

– Support for GPUs: Numba can target NVIDIA GPUs for parallel computation (@cuda.jit)

▶ Benefits

– Speed: Offers speed-ups comparable to compiled languages like C

– Ease of Use: No need to rewrite Python code in C or other languages to get better
performance

– Parallelization: Enables easy parallel programming with features like GPU support
27

Numba

from numba import jit

@jit
def vector_add(a, b):
 n = len(a)
 result = np.zeros(n)
 for i in range(n):
 result[i] = a[i] + b[i]
 return result

Vector addition on the CPU
result = vector_add(a, b)

from numba import cuda

@cuda.jit
def vector_add_gpu(a, b, result):
 i = cuda.grid(1)
 if i < len(a):
 result[i] = a[i] + b[i]

Define grid and block size
threads_per_block = 256
blocks_per_grid = (len(a) + (threads_per_block - 1))
// threads_per_block

Launch kernel
vector_add_gpu[blocks_per_grid,
threads_per_block](a, b, result)

CPU

GPU

https://labs.icahn.mssm.edu/minervalab/wp-content/uploads/sites/342/2024/04/MountSinai_accelerated_general_data_science-compressed.pdf
28

Medical Open Network for Artificial Intelligence (MONAI)
▶ Initiative by NVIDIA and King’s College London
▶ Built to create an inclusive AI research community for healthcare imaging
▶ Collaboration includes academic and industry leaders
▶ Provides open-source PyTorch-based frameworks for:

– Annotation, model building, training, deployment, and optimization
▶ Focus on reproducibility and collaboration
▶ Key components:

– MONAI Core: Training AI models in healthcare imaging

– MONAI Label: Smart image annotation

– MONAI Deploy SDK: Convert models into deployable AI applications

– MONAI Model Zoo: Pre-built medical imaging models

https://github.com/Project-MONAI
https://monai.io/

29

NVIDIA Holoscan
▶ NVIDIA Holoscan is the sensor processing platform that streamlines the

development and deployment of AI and high-performance computing (HPC)
applications for real-time insights

▶ Key Benefits
– Sensor Processing: Supports video capture, ultrasound research, and legacy medical

devices

– Low Latency: Holoscan SDK helps measure end-to-end latency for video processing

– AI Pipelines: Access AI reference pipelines for radar, high-energy light sources,
endoscopy, ultrasound, and other streaming video applications

▶ Use Cases
– Medical Devices: Real-time AI for surgery, helping clinical teams with patient-specific

decisions

– Edge Computing: Scalable AI solutions from surgery to satellites
https://www.nvidia.com/en-us/clara/holoscan/

30

NVIDIA FLARE
▶ NVIDIA FLARE (NVIDIA Federated Learning

Application Runtime Environment) is a
domain-agnostic, open-source, and extensible
SDK for Federated Learning

▶ Key Features:

– Privacy-Preserving Algorithms: Protects data
privacy with algorithms that prevent reverse
engineering of model updates

– Distributed Multi-Party Collaboration: Enables AI
model development across diverse data sources
without sharing data

– Supports Popular ML/DL Frameworks: Integrates
seamlessly with frameworks like PyTorch,
TensorFlow, and more

– Extensible Management Tools: Offers SSL
certifications, admin console, and TensorBoard for
experiment monitoring

https://developer.nvidia.com/flare

31

Ways to Accelerate with GPUs:
OpenACC Directives

32

OpenACC Directives
▶ OpenACC is a directive-based programming

model for parallel computing, designed to make
performance-portable code accessible to
scientists and engineers across various HPC
hardware platforms. It enables efficient
parallelization without the complexities of low-level
programming

▶ Key Benefits:

– Simplified Code Parallelism: Use directives
to easily identify parallel regions

– Accelerator Ready: Ideal for many-core
GPUs and multicore CPUs

– Less Effort: Reduces development time and
complexity compared to CUDA or OpenCL

#pragma acc directive [clause [,]
clause] ...
{
// Code to be executed in parallel
}

!$acc directive [clause [,] clause]
...
! Code to be executed in parallel
!$acc end directive

C

Fortran

https://labs.icahn.mssm.edu/minervalab/wp-content/uploads/sit
es/342/2024/05/FiveWays-HealthCare-April2024.pdf

33

SAXPY Example: SAXPY is “Single-Precision A times X Plus Y”

void saxpy_with_offset(int n, float a,
float *x, float *restrict y, int offset)
{
 #pragma acc kernels
 for (int i = offset; i < n + offset; ++i)
 {
 y[i] = a * x[i - offset] + y[i];
 }
}

...

// Perform SAXPY on 1M elements with an
offset of 1000
saxpy_with_offset(1 << 20, 2.5, x, y,
1000);
...

subroutine saxpy_with_offset(n, a, x, y,
offset)
 real :: x(:), y(:), a
 integer :: n, i, offset

 !$acc kernels
 do i = offset + 1, n + offset
 y(i) = a * x(i - offset) + y(i)
 end do
 !$acc end kernels

end subroutine saxpy_with_offset

...

! Perform SAXPY on 1M elements with an offset
of 1000
call saxpy_with_offset(2**20, 2.5, x, y, 1000)
...

SAXPY in C SAXPY in Fortran

https://labs.icahn.mssm.edu/minervalab/wp-content/uploads/sites/342/2024/05/FiveWays-HealthCare-April2024.pdf 34

Ways to Accelerate with GPUs:
CUDA Programming

35

CUDA Programming
▶ What is CUDA?

– CUDA (Compute Unified Device Architecture) is a parallel computing platform and
programming model developed by NVIDIA

– It enables developers to utilize the power of NVIDIA GPUs for general-purpose computing

▶ Key Features:

– Parallel Computing: CUDA allows thousands of threads to execute concurrently,
maximizing the utilization of the GPU.

– Heterogeneous Programming: Code can run on both the CPU (host) and GPU (device),
allowing for efficient division of tasks .

– Flexible Memory Management: CUDA provides various types of memory (global, shared,
constant) that can be optimized for different tasks .

▶ CUDA provides APIs for C/C++, Fortran, Python, Julia
▶ CUDA-aware MPI implementations include OpenMPI, MVAPICH, Spectrum MPI,

and others 36

CUDA C

void saxpy_offset_serial(int n, float a,
float *x, float *y, int offset)
{
 for (int i = offset; i < n + offset;
++i)
 {
 y[i] = a * x[i - offset] + y[i];
 }
}

// Perform SAXPY on 1M elements with an
offset of 1000
saxpy_offset_serial(4096 * 256, 2.0, x, y,
1000);

__global__
void saxpy_offset_parallel(int n, float a,
float *x, float *y, int offset)
{
 int i = blockIdx.x * blockDim.x +
threadIdx.x + offset;
 if (i < n + offset) {
 y[i] = a * x[i - offset] + y[i];
 }
}

// Perform SAXPY on 1M elements with an
offset of 1000
saxpy_offset_parallel<<<4096, 256>>>(n,
2.0, x, y, 1000);

https://labs.icahn.mssm.edu/minervalab/wp-content/uploads/sites/342/2024/05/FiveWays-HealthCare-April2024.pdf

37

Ways to Accelerate with GPUs:
Standard Language Parallelism

38

Standard Language Programming

https://developer-blogs.nvidia.com/wp-content/uploads/2022/01/Fig-1-Programming-the-Nvidia-Platform-2.png 39

Standard Language Programming

https://developer-blogs.nvidia.com/wp-content/uploads/2022/01/Fig-2-Standard-C-1.png

Lulesh Hydronynamics Mini-app

40

User GPU Software Environment - Major packages
OS: Rocky 9.4 with glibc-2.34(GNU C library) available

● Packages with GPU support:
○ Schrödinger Suite, Amber tools, NAMD, Gromacs, Alpha Fold2, etc.

● AI tools with python/3.12.5
○ CuPy, cuDF, cuML, Numba, scikit-learn, Scanpy, Squidpy, etc.
○ Minerva Python instruction

● AI tools with conda
○ MONAI, Rapids, NVFlare, tensorflow, pytorch, etc.
○ Minerva conda instruction

● AI tools with singularity
○ Holoscan, BioNeMo, Parabricks, DeepVariant, etc.
○ Minerva singularity instruction
○ Minerva Singularity training

● Cuda toolkit versions up to 12.4.0
● Nsight Systems

41

https://labs.icahn.mssm.edu/minervalab/documentation/python-and-jupyter-notebook/
https://labs.icahn.mssm.edu/minervalab/documentation/conda/
https://labs.icahn.mssm.edu/minervalab/documentation/running-container-singularity/
https://labs.icahn.mssm.edu/minervalab/resources/the-minerva-user-group-and-training-classes/

Important Reminder

▶ Need assistance? Feel free to contact us at:

hpchelp@hpc.mssm.edu

42

Acknowledgements

▶ Supported by the Clinical and Translational Science Awards (CTSA) grant
UL1TR004419 from the National Center for Advancing Translational
Sciences, National Institutes of Health.

43

