
Load Sharing Facility (LSF)
Minerva Scientific Computing Environment

https://labs.icahn.mssm.edu/minervalab

Hyung Min Cho, PhD
The Minerva HPC Team

February 20, 2025

Outline

● LSF introduction and basic/helpful LSF commands

● Job submission and monitoring

● Interactive job

● Dependent job

● Parallel jobs: parallel processing and GPUs

● Job arrays and Self-scheduler

● Tips for efficient usage of the queuing system

2

Running Jobs on Minerva Compute Nodes

4 Login nodes

Compute Partition:

146 Regular nodes
 37 High memory nodes
 75 GPU nodes

NIH Funded nodes (55 CATS nodes)

bsub < Your_Job_Submission_Script.lsf

ssh userID@minerva.hpc.mssm

Access to compute resources and job scheduling are managed by IBM Spectrum LSF (Load Sharing Facility) batch system.

Never run jobs on login nodes

Minerva cluster @ Mount Sinai
Chimera Partition:

● 4x login nodes - Intel Emerald Rapids 8568Y+, 2.3GHz – 96 cores with 512 GB memory per node.
● Compute nodes -

○ 146 high memory nodes - Intel Emerald Rapids 8568Y+, 2.3GHz - 96 cores with 1.5 TB memory per node.)
○ 37 high memory nodes - Intel 8168/8268, 2.7/2.9GHz - 1.5 TB mem/node
○ GPU nodes:

■ 12 -Intel 6142, 2.6GHz - 384 GB memory - 4x V100-16 GB GPU
■ 8 - Intel 8268, 2.9 GHz - 384 GB memory - 4x A100- 40 GB GPU
■ 2 - Intel 8358,2.6GHz - 2 TB memory - 4x A100- 80 GB GPU
■ 2 - Intel 8358 2.6 GHz- 500 GB memory - 4x H100- 80 GB GPU
■ 47 - Intel ER 8568Y+, 2.3GHz - 1.5 TB memory - 4x H100- 80 GB GPU
■ 4 - AMD Genoa 9334 2.7GHz - 1.5 TB memory - 8x L40S- 48 GB GPU

NIH FUNDED NODES
CATS Partition:

● $2M CATS awarded by NIH (Kovatch PI)
● 55 compute nodes - Intel 8358, 2.6 GHz- 64 cores per node -1.5 TB / node

Storage: 32 PB of high-speed online storage as an IBM General Parallel File System (GPFS)
● Path /sc/arion : Use the system path environment variable in scripts $GPFS

4

https://labs.icahn.mssm.edu/minervalab/resources/hardware-technical-specs/

https://labs.icahn.mssm.edu/minervalab/resources/hardware-technical-specs/

Prerequisite

● Must have a project allocation account.
● If you don’t have one, ask your PI (or project authorizer) send a request at

hpchelp@hpc.mssm.edu
● To see a list of accessible project accounts:

$ mybalance
 User_ID Project_name BODE/CATS
 ------- --------------- ---------
 choh07 acc_hpcstaff Yes
 choh07 acc_DGXTrial No

…

mailto:hpchelp@hpc.mssm.edu

Basic LSF commands

● bsub Batch job submission

● bjobs Show your job status. Pending reasons
● bkill Kill a batch job
● bmod Modify the resource requirement of a pending job

● bpeek Display the stdout and stderr output of an unfinished job
● bhist Display historical information about a job
● bqueues Display information about queues
● bhosts Display load status information of each compute node

IBM LSF Documentation: https://www.ibm.com/docs/en/spectrum-lsf/10.1.0

Batch job submission example
$ cat myfirst.lsf

#!/bin/bash
#BSUB -J myfirstjob # Job name
#BSUB -P acc_hpcstaff # REQUIRED; To get allocation account, type “mybalance”
#BSUB -q premium # queue; default queue is premium
#BSUB -n 1 # number of compute cores (job slots) needed, 1 by default
#BSUB -W 6:00 # REQUIRED; walltime in HH:MM
#BSUB -R rusage[mem=4000] # 4000 MB of memory request per “-n”; 3000 MB by default
#BSUB -oo %J.stdout # output log (%J : JobID)
#BSUB -eo %J.stderr # error log
#BSUB -L /bin/bash # Initialize the execution environment

ml gcc # Commands that you need to run
cd /sc/arion/work/MyID/my/job/dir/
../mybin/serial_executable < testdata.inp > results.log

$ bsub < myfirst.lsf
Job <87426883> is submitted to queue <premium>.

Batch job submission example (continue)
$ cat mysecond.lsf

#!/bin/bash
#BSUB -q premium # queue
#BSUB -R rusage[mem=4000] # 4000 MB of memory request per “-n”; 3000 MB by default
#BSUB -oo %J.stdout # output log (%J : JobID)
#BSUB -eo %J.stderr # error log
#BSUB -L /bin/bash # Initialize the execution environment

ml gcc # Commands that you need to run
cd /sc/arion/work/MyID/my/job/dir/
../mybin/serial_executable < testdata.inp > results.log

$ bsub -q express -J mysecondjob -P acc_hpcstaff -n 1 -W 30 < mysecond.lsf
Job <87426921> is submitted to queue <premium>.

 If an option is given on both the bsub command line and in the job script, the command line
option overrides the option in the script.

bsub major options
-P accountName of the form: acc_projectName

-q queuename submission queue

-n ncpu number of cpu’s requested (default: 1)

-W wallClockTime in form of HH:MM

-R rusage[mem=...] amount of memory requested per “-n” in MB
Standard abbreviations (MB, GB, …) can also be used.
max memory per node: ~1.4TB (Chimera, himem, CATS, GPU H100,
L40S), ~325GB (GPU V100, A100) , ~1.9TB (himem-GPU A100-80GB),
~435GB(GPU H100-80GB)

-R span[#-n’s per physical node]
span[ptile=4] - 4 cores per node/host
span[hosts=1] - all cores on same node/host

bsub major options

▶ -o Name of output file (concatenated)
▶ -oo Name of output file (overwrite)
▶ -e Name of error file (concatenated)
▶ -eo Name of error file (overwrite)

NOTE: Default output is mailed to the user BUT since we have disabled
mail response, it goes into the bit bucket.

If -o(o) is specified but not -e, error is appended to output file.

Minerva LSF queue structure

* shared

bqueues : information about all the available queues

bhosts : Displays nodes and their load status

● List all the compute nodes on Minerva

bhosts (continue)

bhosts (continue)

bjobs : status of jobs

Check your job: $ bjobs JobID
 JOBID USER JOB_NAME STAT QUEUE FROM_HOST EXEC_HOST SUBMIT_TIME START_TIME TIME_LEFT
 87426883 choh07 myfirstjob PEND premium li03c03 - Mar 27 14:38 - -

Pending reasons: $ bjobs -p JobID
 JOBID USER JOB_NAME STAT QUEUE FROM_HOST EXEC_HOST SUBMIT_TIME START_TIME TIME_LEFT
 87426883 choh07 myfirstjob PEND premium li03c03 - Mar 27 14:38 - -
 New job is waiting for scheduling;

Show full details about the job: bjobs -l JobID

bkill : terminate jobs in the queue
Lots of ways to get away with murder

Kill by JobID bkill 87426883

Kill by JobName bkill -J myjob

Kill a bunch of jobs bkill -J myjob_*

Kill all your jobs bkill 0

bpeek: display output of the job produced so far
$ bpeek 2937044
<< output from stdout >>
“Hello Minerva”

<< output from stderr >>

bmod: modify submission options of “pending” jobs

bmod takes similar options to bsub
● bmod -R rusage[mem=20000] JobID

○ -R replaces ALL R fields not just the one you specify
● bmod -q express JobID

$ bmod -q express 2937044
Parameters of job <2937044> are being changed

bhist : historical information
bhist -n 5 -l 2937044

Interactive access to compute resources
● Set up an interactive environment on compute nodes with internet access
● Useful for testing and debugging jobs
● Interactive GPU is available for job testing

● -Is: Interactive terminal/shell
● -XF: X11 forwarding
● /bin/bash : the shell to use

$ bsub -P acc_hpcstaff -q interactive -n 4 -W 2:00 -R rusage[mem=4000] -R span[hosts=1]
-XF -Is /bin/bash
Job <2916837> is submitted to queue <interactive>.
<<ssh X11 forwarding job>>
<<Waiting for dispatch ...>>
<<Starting on lc02a29>>

bsub -P acc_hpcstaff -q interactive -n 4 -W 2:00 -R rusage[mem=4000] -R span[hosts=1] -XF -Is /bin/bash

Dependent Job
Any job can be dependent on other LSF jobs.

Syntax
bsub -w 'dependency_expression'
usually based on the job states of preceding jobs.

bsub -J myJ < myjob.lsf

bsub -w 'done(myJ)' < dependent.lsf

For more details about the dependency_expression:
https://www.ibm.com/docs/en/spectrum-lsf/10.1.0?topic=scheduling-dependency-conditions

https://www.ibm.com/docs/en/spectrum-lsf/10.1.0?topic=scheduling-dependency-conditions

Parallel Jobs

● Distributed memory program: Message passing between processes (e.g.
MPI) Map-reduce(e.g. Spark)
○ Processes execute across multiple CPU cores or nodes

● Shared memory program (SMP): multi-threaded execution (e.g. OpenMP)
○ Running across multiple CPU cores on same node

● GPU programs: offloading to the device via CUDA

● Array job: Parallel analysis for multiple instances of the same program
○ Execute on multiple data files simultaneously
○ Each instance running independently

Message Passing Interface (MPI) Jobs
● This example requests 48 cores and 2 hours in the "express” queue.

○ Those 48 cores are dispatched across multiple nodes
#!/bin/bash
#BSUB -J myjobMPI
#BSUB -P acc_hpcstaff
#BSUB -q express
#BSUB -n 48
#BSUB -R span[ptile=8]

#BSUB -W 02:00
#BSUB -o %J.stdout
#BSUB -eo %J.stderr
#BSUB -L /bin/bash

cd $LS_SUBCWD
module load openmpi
mpirun -np 48 /my/bin/executable < my_data.in

Multithreaded Jobs - OpenMP
● Multiple CPU cores within one node using shared memory

○ In general, a multithreaded application uses a single process which then spawns multiple threads
of execution

○ It’s highly recommended the number of threads is set to the number of compute cores
● Your program has to be written to use multi-threading

#!/bin/bash
#BSUB -J myjob
#BSUB -P YourAllocationAccount
#BSUB -q express
#BSUB -n 4
#BSUB -R "span[hosts=1]”
#BSUB -R rusage[mem=12GB]
#BSUB -W 01:00
#BSUB -o %J.stdout
#BSUB -eo %J.stderr
#BSUB -L /bin/bash

cd $LS_SUBCWD
export OMP_NUM_THREADS=4 #sets the number of threads
/my/bin/executable < my_data.in

Specifying a resource - OpenMP job
Span: define the shape of the slots you ask for:

-n 12 -R span[hosts=1] - allocate all 12 cores to one host
-n 12 -R span[ptile=12] - all 12 slots/cores must be on 1 node
-n 24 -R span[ptile=12] - allocate 12 cores per node = 2 nodes

OMP_NUM_THREADS must be set in script:
● bsub -n 12 -R span[hosts=1] < my_parallel_job

export OMP_NUM_THREADS=12
● bsub -n 12 -R span[ptile=12] -a openmp < my_parallel_job

LSF sets it for you as number of procs per node
● bsub -n 1 -R “affinity[core(12)]” -R “rusage[mem=12000]” -a openmp

< my_parallel_job
○ 1 job slot with 12 cores, 12000MB memory to that job slot...not per core
○ Advantage: Can vary number of cores and/or memory without making any other

changes or calculations

A Bravura Submission - Mixing it all together

Suppose you want to run a combined MPI-openMP job. One mpi process
per node, openMP in each MPI Rank:

bsub -n 20 -R span[ptile=1] -R affinity[core(8)] -a openmp < my_awsome_job

ptile=1 - one slot on each node

core(8) - 8 cores per job slot

openmp - will set OMP_NUM_THREADS on each node to 8

26

GPGPU (General Purpose Graphics Processor Unit)
● GPGPU resources on Minerva

○ interactive queue (1 GPU node)
○ gpu/gpuexpress queue for batch

● GPU option specification:
-gpu num=Ngpus -R GPU_Model

e.g. -gpu num=4 -R h100nvl

Ngpus : Number of GPU cards requested PER NODE.
To request GPU cards on the same node, “-R span[hosts=1]” MUST be added.

GPU_Model

v100 TeslaV100_PCIE_16GB

a100 NVIDIAA100_PCIE_40GB

a10080g NVIDIAA100_SXM4_80GB

h10080g NVIDIAH100_PCIE_80GB

h100nvl NVIDIAH100_SXM5_80GB

l40s NVIDIAL40S_PCIE_48GB

GPGPU (continue)
#BSUB -q gpu
#BSUB -n Ncpu

#BSUB -gpu num=4
#BSUB -R a100
#BSUB -R span[hosts=1]

module purge
module load anaconda3 (or 2)
module load cuda
source activate tfGPU

python -c "import tensorflow as tf"

submit to gpu queue
Ncpu is 1~48 on A100

request 4 GPUs on A100 node
request all gpu cards on the same node
The number of GPUs requested per node

to access tensorflow
to access the drivers and supporting
subroutines

GPGPU (continue)
● LSF will set CUDA_VISIBLE_DEVICES to the list of GPU cards assigned to the job.

E.g: 2,1,3 Most standard packages honor these assignments
○ DO NOT MANUALLY CHANGE THE VALUE OF CUDA_VISIBLE_DEVICES.

● Multiple GPU cards can be requested across different GPU nodes
#BSUB -q gpuexpress
#BSUB -n 8
#BSUB -R span[ptile=2]
#BSUB -R h100nvl
#BSUB -gpu num=2

submit to gpuexpress queue
8 compute cores requested
2 cores per node, so 4 nodes in total requested
request specified gpu node h100nvl
2 GPUs requested per node

Note that 2 GPU cards will be reserved on each of 4 nodes for your job. If your job cannot
/does not run in distributed mode, you will still lock these resources on the nodes that you
are not using and prevent others from being dispatched to those node.

CUDA_VISIBLE_DEVICES may be defined differently on each of the nodes allocated to
your job.

GPGPU - Local SSD

● Make your own directory under /ssd and direct your temporary files there.
● Clean up your temporary files after completion.

#BSUB -q gpu
#BSUB -gpu num=2
#BSUB -R a10080g
#BSUB -R span[hosts=1]
#BSUB -R rusage[ssd_gb=500]
#BSUB -E "mkdir /ssd/YourID_$LSB_JOBID"
#BSUB -Ep "rm -rf /ssd/YourID_$LSB_JOBID"
#BSUB …

A100 1.8 TB SATA SSD

A100-80GB 7.0 TB NVMe PCIe SSD

H100-80GB, H100NVL, L40S 3.84 TB NVMe PCIe SSD

Array Job
● Groups of jobs with the same executable and resource requirements, but

different input files that can be indexed by numbers.
○ -J “Jobname[index | start-end:increment]”
○ Range of job index is 1~ 10,000

○ LSB_JOBINDEX is set to array index

31

#!/bin/bash
#BSUB -P acc_hpcstaff
#BSUB -n 1
#BSUB -W 02:00
#BSUB -q express
#BSUB -J "jobarraytest[1-10]"
#BSUB -o logs/out.%J.%I
#BSUB -e logs/err.%J.%I
echo “Working on file.$LSB_JOBINDEX”

Array Job (continue)

$ bsub < myarrayjob.sh
Job <2946012> is submitted to queue <express>.

$ bjobs
 JOBID USER JOB_NAME STAT QUEUE FROM_HOST EXEC_HOST
SUBMIT_TIME START_TIME TIME_LEFT
 2946012 gail01 *rraytest[1] PEND express li03c03 - Sep 10 14:50 - -
 2946012 gail01 *rraytest[2] PEND express li03c03 - Sep 10 14:50 - -
 2946012 gail01 *rraytest[3] PEND express li03c03 - Sep 10 14:50 - -
 2946012 gail01 *rraytest[4] PEND express li03c03 - Sep 10 14:50 - -
 2946012 gail01 *rraytest[5] PEND express li03c03 - Sep 10 14:50 - -
 2946012 gail01 *rraytest[6] PEND express li03c03 - Sep 10 14:50 - -
 2946012 gail01 *rraytest[7] PEND express li03c03 - Sep 10 14:50 - -
 2946012 gail01 *rraytest[8] PEND express li03c03 - Sep 10 14:50 - -
 2946012 gail01 *rraytest[9] PEND express li03c03 - Sep 10 14:50 - -
 2946012 gail01 *raytest[10] PEND express li03c03 - Sep 10 14:50 - -

Self-scheduler
● Submit large numbers of independent short serial jobs as a single batch

#!/bin/bash
#BSUB -q express
#BSUB -W 1:00
#BSUB -n 12
#BSUB -J selfsched
#BSUB -o test01
module load selfsched # load the selfsched module
mpirun -np 12 selfsched < test.inp # 12 cores, with one master process

$cat test.inp (test.inp: input for Self-Scheduler; a series of job commands)
/my/bin/path/my_program < input_jason > output_jason

/my/bin/path/my_program < input_tom > output_tom

. . .

/my/bin/path/my_program < input_jane > output_jane

Job submission script example: selfsched.lsf
#!/bin/bash
#BSUB -J myMPIjob # Job name
#BSUB -P acc_bsr3101 # allocation account
#BSUB -q express # queue
#BSUB -n 64 # number of compute cores
#BSUB -R span[ptile=4] # 4 cores per node
#BSUB -R rusage[mem=4G] # 256 GB of memory (4 GB per core)
#BSUB -W 2:00 # walltime (2 hours.)
#BSUB -o %J.stdout # output log (%J : JobID)
#BSUB -eo %J.stderr # error log
#BSUB -L /bin/bash # Initialize the execution environment

echo "Job ID : $LSB_JOBID"
echo "Job Execution Host : $LSB_HOSTS"
echo "Job Sub. Directory : $LS_SUBCWD"

module load python
module load selfsched
mpirun -np 64 selfsched < BunchOfSerialJobs.inp > BunchOfSerialJobs.out

Common errors of batch jobs

1. Valid allocation account needed in the submission script
-=-
 Project acc_project is not valid for user gail01
-=-
Request aborted by esub. Job not submitted.

● Use mybalance to see accessible accounts.
2. Reach memory limit
 $ bhist -n 10 -l 107992756

● memory based on one core, with 3000MB as default
● multithreaded applications need to be on the same node, such as STAR, BWA,...

3. No suitable hosts for the job
● Requested resource is non-exist : -n 256 -R span[hosts=1]

Fri Jul 27 11:07:33: Completed <exit>; TERM_MEMLIMIT: job killed after
 reaching LSF memory usage limit;

DOs and DON’Ts
● Request reasonable resource

○ Prior knowledge needed. (Try short test runs before production to get a
reasonable estimate)

○ User limit:
Max running jobs per user: 4,000

Max pending jobs per user: 20,000

Max num. of GPUs per user: 60

Global Memory limit: 30TB (20TB on CATS)

Heavy users: depending on the resource requested

○ Monitor resource usage of a running job: “bjobs -l JobID”
…
 MEMORY USAGE:
 MAX MEM: 68.1 Gbytes; AVG MEM: 37.4 Gbytes; MEM Efficiency: 79.83%

 CPU USAGE:
 CPU PEAK: 19.89 ; CPU Efficiency: 99.43%

Tips for efficient usage of the queuing system
● Find appropriate queue and nodes

○ use -q interactive: for debug (both CPU and GPU with internet access)
○ use -q express if walltime < 12h
○ use himem node for memory intensive jobs

● Memory request is per core in MB, not per job.
● You can open an interactive session on a regular compute node, too.

bsub -q premium -n … -W … -P … … -Is /bin/bash
● Job not start after a long pending time

○ Whether the resource requested is non-exist:
 -R rusage[mem = 100GB] -n 256 -R span[hosts=1]

○ Run into PM:

● Scratch disk not backed up, efficient use of limited resources.
● Job temporary dir configured to /local/JOBS instead of /tmp.

NOTE: Because of PM reservations, job may not run
 until after Sat 21 Mar at 8:00PM
-=-
Job <6628109> is submitted to queue <premium>.

Final Friendly Reminder
● Acknowledge Scientific Computing and NIH at Mount Sinai in your publications

○ Please acknowledge the support from Scientific Computing and Data at the Icahn School of Medicine
at Mount Sinai by including the following acknowledgement in a publication of any material, whether
copyrighted or not, based on or developed with Minerva HPC resources:
“This work was supported in part through the computational resources and staff expertise provided by Scientific
Computing and Data at the Icahn School of Medicine at Mount Sinai and supported by the Clinical and Translational
Science Awards (CTSA) grant UL1TR004419 from the National Center for Advancing Translational Sciences.”

○ Please further acknowledge the NIH S10 awards by including the following acknowledgement in a
publication of any material, whether copyrighted or not, based on or developed with NIH S10 funded
equipment (CATS-COVID and Translational Science Supercomputer):
“Research reported in this paper was supported by the Office of Research Infrastructure of the National Institutes of
Health under award number S10OD030463. The content is solely the responsibility of the authors and does not
necessarily represent the official views of the National Institutes of Health.”

● Follow us by visiting https://labs.icahn.mssm.edu/minervalab

https://labs.icahn.mssm.edu/minervalab

Last but not Least

▶ Got a problem? Need a program installed? Send an email to:

hpchelp@hpc.mssm.edu
39

Acknowledgements

▶ Supported by the Clinical and Translational Science Awards (CTSA) grant
UL1TR004419 from the National Center for Advancing Translational
Sciences, National Institutes of Health.

40

