Load Sharing Facility (LSF)

Minerva Scientific Computing Environment

https://labs.icahn.mssm.edu/minervalab

Hyung Min Cho, PhD m

The Minerva HPC Team Icahn
School of

Medicine at
Mount

F 20, 202 o
ebruary 20, 2025 Sinai

Outline

o LSF introduction and basic/helpful LSF commands
o Job submission and monitoring

o Interactive job

o« Dependent job

o Parallel jobs: parallel processing and GPUs

« Job arrays and Self-scheduler

» Tips for efficient usage of the queuing system

Running Jobs on Minerva Compute Nodes

ssh userID@minerva.hpc.mssm

[4 Login nodes } Never run jobs on login nodes

ﬁ bsub < Your_Job_Submission_Script.Isf

4 N

Compute Partition:

146 Regular nodes
37 High memory nodes
75 GPU nodes

NIH Funded nodes (55 CATS nodes)

N /

Access to compute resources and job scheduling are managed by IBM Spectrum LSF (Load Sharing Facility) batch system.

Minerva cluster (@ Mount Sinai

Chimera Partition:
e 4xlogin nodes - Intel Emerald Rapids 8568Y+, 2.3GHz — 96 cores with 512 GB memory per node.

e Compute nodes -

o 146 high memory nodes - Intel Emerald Rapids 8568Y+, 2.3GHz - 96 cores with 1.5 TB memory per node.)
o 37 high memory nodes - Intel 8168/8268, 2.7/2.9GHz - 1.5 TB mem/node
o GPU nodes:

m 12 -Intel 6142, 2.6GHz - 384 GB memory - 4x V100-16 GB GPU
8 - Intel 8268, 2.9 GHz - 384 GB memory - 4x A100- 40 GB GPU
2 - Intel 8358,2.6GHz - 2 TB memory - 4x A100- 80 GB GPU
2 - Intel 8358 2.6 GHz- 500 GB memory - 4x H100- 80 GB GPU
47 - Intel ER 8568Y+, 2.3GHz - 1.5 TB memory - 4x H100- 80 GB GPU
4 - AMD Genoa 9334 2.7GHz - 1.5 TB memory - 8x L40S- 48 GB GPU
NIH FUNDED NODES

CATS Partition:
e $2M CATS awarded by NIH (Kovatch PI)

e 55 compute nodes - Intel 8358, 2.6 GHz- 64 cores per node -1.5 TB / node

Storage: 32 PB of high-speed online storage as an_IBM General Parallel File System (GPFS)
e Path /sc/arion : Use the system path environment variable in scripts $GPFS

https://labs.icahn.mssm.edu/minervalab/resources/hardware-technical-specs/

https://labs.icahn.mssm.edu/minervalab/resources/hardware-technical-specs/

Prerequisite

o Must have a project allocation account.

» If you don’t have one, ask your PI (or project authorizer) send a request at
hpchelp@hpc.mssm.edu

o To see a list of accessible project accounts:

$ mybalance

User ID Project_name BODE/CATS
chohQ7 acc_hpcstaff Yes
choh07 acc_DGXTrial No

mailto:hpchelp@hpc.mssm.edu

Basic LSF commands

e bsub Batch job submission

e bjobs Show your job status. Pending reasons

o Dbkill Kill a batch job

e bmod Modify the resource requirement of a pending job

o bpeek Display the stdout and stderr output of an unfinished job
o bhist Display historical information about a job

o« bqueues Display information about queues

o bhosts Display load status information of each compute node

IBM LSF Documentation: https://www.ibm.com/docs/en/spectrum-Isf/10.1.0

Batch job submission example

$ cat myfirst.Isf

#!/bin/bash

#BSUB -J myfirstjob # Job name

#BSUB -P acc_hpcstaff # REQUIRED:; To get allocation account, type “mybalance”
#BSUB -q premium # queue; default queue is premium

#BSUB -n 1 # number of compute cores (job slots) needed, 1 by default
#BSUB -\W 6:00 # REQUIRED; walltime in HH:MM

#BSUB -R rusage[mem=4000] # 4000 MB of memory request per “-n”; 3000 MB by default
#BSUB -00 %J.stdout # output log (%dJ : JobID)

#BSUB -eo %J.stderr # error log

#BSUB -L /bin/bash # Initialize the execution environment

ml gcc # Commands that you need to run

cd /sc/arion/work/MyID/myl/job/dir/
../mybin/serial_executable < testdata.inp > results.log

$ bsub < myfirst.Isf
Job <87426883> is submitted to queue <premium>.

Batch job submission example (continue)

$ cat mysecond.Isf

#!/bin/bash

#BSUB -g premium # queue

#BSUB -R rusage[mem=4000] # 4000 MB of memory request per “-n”; 3000 MB by default
#BSUB -00 %J.stdout # output log (%J : JobID)

#BSUB -eo %J.stderr # error log

#BSUB -L /bin/bash # Initialize the execution environment

ml gcc # Commands that you need to run

cd /sc/arion/work/MyID/my/job/dir/
../mybin/serial_executable < testdata.inp > results.log

$ bsub -g express -J mysecondjob -P acc_hpcstaff -n 1 -W 30 < mysecond.Isf
Job <87426921> is submitted to queue <premium>.

If an option is given on both the bsub command line and in the job script, the command line
option overrides the option in the script.

bsub major options

-P accountName of the form: acc_projectName

-J queuename submission queue

-n ncpu number of cpu’s requested (default: 1)

-W wallClockTime in form of HH:MM

-R rusage[mem=...] amount of memory requested per “-n” in MB

Standard abbreviations (MB, GB, ...) can also be used.

max memory per node: ~1.4TB (Chimera, himem, CATS, GPU H100,
L40S), ~325GB (GPU V100, A100) , ~1.9TB (himem-GPU A100-80GB),
~435GB(GPU H100-80GB)

-R span[#-n’s per physical node]
span[ptile=4] - 4 cores per node/host

span[hosts=1] - all cores on same node/host

bsub major options

» -0 Name of output file (concatenated)
» -00 Name of output file (overwrite)

» -e Name of error file (concatenated)
» -eo0 Name of error file (overwrite)

NOTE: Default output is mailed to the user BUT since we have disabled
mail response, it goes into the bit bucket.

If -0(0) is specified but not -e, error is appended to output file.

Minerva LSF queue structure

Queue Description

premium Normal submission queue
express Rapid turnaround jobs

interactive Jobs running in interactive mode
long Jobs requiring extended runtime
gpu Jobs requiring gpu resources
gpuexpress Short jobs requiring gpu resources
private Jobs using dedicated resources

Any other queues are for testing by the

others Scientific Computing group

Max Walltime

144 hrs

12 hrs

12 hrs

336 hrs

144 hrs

15 hrs

Unlimited

N/A

* shared

bqueues : information about all the available queues

[choh07@L104e02 ~]$ bqgueues

PRIO STATUS MAX JL/U JL/P JL/H NJOBS

200 Open:Active - 29788

200 Open:Active 32

200 Open:Active 0

200 Open:Active 0

200 Open:Active 167

200 Open:Active 0

130 Open:Active 0

120 Open:Active 267
interactive 100 Open:Active 15
ondemand-networ 100 Open:Active 3

100 Open:Active 72 45

100 Open:Active 308 141
gpuexpress 100 Open:Active 79813 79394
private shared 20 Open:Active 0 0

looNolNoNoloNoNloNoNoNolNolNolo]

bhosts : Displays nodes and their load status

o List all the compute nodes on Minerva

HOST_NAME STATUS JL/U MAX NJOBS RUNl SSUSP USUSP
1c03el6 ok 96 24 21
1c03el7 ok 96 10 10
ok 96 48 48
ok 96 94 94
closed 96 96 82
ok 96 82 82
closed 96 96 96

ok 96 79 79
closed 96 96 96
closed 96 96 96
(0] 96 92 92
ok 96 78 78

olloNoNoNoNoNoNoNoNeNo N
DD DD (DD (DD (D

oloNoNoNoNoNolFloNoNoNo

bhosts (continue)

[choh07@L104e02 ~]$ bhosts gpuexpress
STATUS JL/U MAX NJOBS RUN SSUSP USUSP RSV
ok 32
ok 32
ok 32
ok 32
ok 32
(0] 32
ok 32
(0] 32
ok 32
ok 96
ok 96
ok 96
ok 96
ok 96
ok 96
ok 96
(0] 96
ok 96
(0] 96
ok 96
ok 96
ok 96
ok 96
(0] 96
ok 96

[cNoRoRoRoNoNoNoNoNoRNoNoRoNoNoNoNloNoNoNoNoRoRNoRNo N
[cNoNoNoNololoNoNoNoNololololoNoNoNoNoNoNoNoNoNoNol
[cNoNoRNoRoNoNoNoNoNoNoNoNoNoNoNoNloNoNoNoNoRoRNoNo N

bhosts (continue)

[choh07@1104e02 ~]$ bhosts interactive

HOST_NAME STATUS JL/U MAX SSUSP USUSP
1c03el6 (0] ¢ - 96 0
1c03e17 ok - 96 0
1g03a01 ok - 32 0

[choh07@1104e02 ~]$ bhosts long
HOST _NAME STATUS JL/U SSUSP USUSP

X
wn
<

1h059g02 ok
1h05g03 ok
1h05g04 ok
1h05g05 ok
1h05g06 ok
1h05g07 ok
1h05g08 ok
1h05g09 ok
1h05g10 ok

(oo B« o B« B« B« S« B «» B «» B « »
loNoNoNoNoNolololo
(«» B «» B «» B «» B «» B «» B «» B «» B < »

bjobs : status of jobs

Check your job: $ bjobs JoblD

JOBID USER JOB_NAME STAT QUEUE FROM_HOST EXEC_HOST SUBMIT_TIME START_TIME TIME_LEFT
87426883 choh07 myfirstiob PEND premium 1i03c03 - Mar 27 14:38 - -

Pending reasons: $ bjobs -p Job/D

JOBID USER JOB_NAME STAT QUEUE FROM_HOST EXEC_HOST SUBMIT_TIME START_TIME TIME_LEFT
87426883 choh07 myfirstiob PEND premium 1i03c03 - Mar 27 14:38 - -
New job is waiting for scheduling;

Show full details about the job: bjobs -/ JobID

bkill : terminate jobs in the queue
Lots of ways to get away with murder

Kill by JobID bkill 87426883
Kill by JobName bkill -J myjob
Kill a bunch of jobs bkill -J myjob_*
Kill all your jobs bkill 0

bpeek: display output of the job produced so far

$ bpeek 2937044
<< output from stdout >>

“Hello Minerva”

<< output from stderr >>
R —————_____—_—_—=—=—=—=—=—=—=—=—=—=—=—=—=—=—=—=—=—=—F v{,_

bmod: modify submission options of “pending” jobs

bmod takes similar options to bsub
o« bmod -R rusage[mem=20000] JobID

o -Rreplaces ALL R fields not just the one you specify
« bmod -q express Job/D

$ bmod -g express 2937044
Parameters of job <2937044> are being changed

bhist : historical information

gaile1@lie3c@3: ~ $ bhist-n 5 -12937044

Job <2937044>, Job Name <myfirstjob>, User <gail@l>, Project <acc_hpcstaff>, Ap
plication <default>, Command <#!/bin/bash;#BSUB -J myfirst
job;#BSUB -P acc_hpcstaff ;#BSUB —-q premium;#BSUB -n 1;#B
SUB -W 6:00 ;#BSUB -R rusage[mem=4000];#BSUB -0 %J.stdout
;#BSUB —eo %J.stderr;#BSUB -L /bin/bash ; module load gcc
;which gccj;echo “Hello Chimera”>

Tue Sep 10 14:38:25: Submitted from host <1i@3c@03>, to Queue <premium>, CWD <$H
OME>, Output File <%J.stdout>, Error File (overwrite) <%J.
stderr>, Re-runnable, Requested Resources <rusage[mem=4000
1>, Login Shell </bin/bash>;

RUNLIMIT
360.0 min of 1i@03c@3

MEMLIMIT
3.9 G

Tue Sep 10 14:38:40: Parameters of Job are changed:

Job queue changes to : express;

Tue Sep 10 14:39:36: Dispatched 1 Task(s) on Host(s) <1c02al3>, Allocated 1 Slo
t(s) on Host(s) <lc@2al3>, Effective RES_REQ <select[((hea
1thy=1)) && (type == local)] order[!-slots:-maxslots] rusa
ge [mem=4000.00] same[model] affinityl[core(1)x*1] >;

Tue Sep 10 14:39:37: Starting (Pid 399431);

Tue Sep 1@ 14:39:39: Running with execution home </hpc/users/gail@l>, Execution

CWD </hpc/users/gail@l>, Execution Pid <399431>;

Tue Sep 10 14:39:41: Done successfully. The CPU time used is 1.5 seconds;

Tue Sep 10 14:39:41: Post job process done successfully;

MEMORY USAGE:
MAX MEM: 9 Mbytes; AVG MEM: 2 Mbytes

Summary of time in seconds spent in various states by Tue Sep 10 14:39:41
PEND PSUSP RUN ususp SSuUSP UNKWN TOTAL
71 0 5 0 0 0 76

Interactive access to compute resources

« Set up an interactive environment on compute nodes with internet access
o Useful for testing and debugging jobs
o Interactive GPU is available for job testing

bsub -P acc_hpcstaff -q interactive -n 4 -W 2:00 -R rusage[mem=4000] -R span[hosts=1] -XF -Is /bin/bash

e -Is: Interactive terminal/shell
e -XF: X11 forwarding
e /bin/bash : the shell to use

$ bsub -P acc_hpcstaff -q interactive -n 4 -W 2:00 -R rusage[mem=4000] -R span[hosts=1]
-XF -Is /bin/bash

Job <2916837> is submitted to queue <interactive>.

<<ssh X11 forwarding job>>

<<Waiting for dispatch ...>>

<<Starting on 1c02a29>>

Dependent Job
Any job can be dependent on other LSF jobs.

Syntax
bsub -w 'dependency_expression'
usually based on the job states of preceding jobs.

bsub -J myJ < myjob.|sf

bsub -w 'done(myJ)' < dependent.|sf

For more details about the dependency_expression:

https://www.ibm.com/docs/en/spectrum-Isf/10.1.0?topic=scheduling-dependency-conditions

https://www.ibm.com/docs/en/spectrum-lsf/10.1.0?topic=scheduling-dependency-conditions

Parallel Jobs

Distributed memory program: Message passing between processes (e.g.
MPI) Map-reduce(e.g. Spark)
o Processes execute across multiple CPU cores or nodes

Shared memory program (SMP): multi-threaded execution (e.g. OpenMP)
o Running across multiple CPU cores on same node

GPU programs: offloading to the device via CUDA

Array job: Parallel analysis for multiple instances of the same program
o Execute on multiple data files simultaneously
o Each instance running independently

Message Passing Interface (MPI) Jobs

o This example requests 48 cores and 2 hours in the "express” queue.
o Those 48 cores are dispatched across multiple nodes

#!/bin/bash

#BSUB -J myjobMPI
#BSUB -P acc_hpcstaff
#BSUB -q express
#BSUB -n 48

#BSUB -R span[ptile=8]

#BSUB -W 02:00
#BSUB -0 %J.stdout
#BSUB -eo %J.stderr
#BSUB -L /bin/bash

cd $LS_SUBCWD
module load openmpi
mpirun -np 48 /my/bin/executable < my_data.in

Multithreaded Jobs - OpenMP

« Multiple CPU cores within one node using shared memory

o In general, a multithreaded application uses a single process which then spawns multiple threads
of execution
o It's highly recommended the number of threads is set to the number of compute cores
« Your program has to be written to use multi-threading

#!/bin/bash

#BSUB -J myjob

#BSUB -P YourAllocationAccount
#BSUB -q express

#BSUB -n 4

#BSUB -R "span[hosts=1]"
#BSUB -R rusage[mem=12GB]
#BSUB -W 01:00

#BSUB -0 %J.stdout

#BSUB -eo %J.stderr

#BSUB -L /bin/bash

cd $LS_SUBCWD
export OMP_NUM_THREADS=4 #sets the number of threads
/my/bin/executable < my_data.in

Specifying a resource - OpenMP job

Span: define the shape of the slots you ask for:

-n 12 -R span[hosts=1] - allocate all 12 cores to one host
-n 12 -R span[ptile=12] - all 12 slots/cores must be on 1 node
-n 24 -R span[ptile=12] - allocate 12 cores per node = 2 nodes

OMP_NUM_THREADS must be set in script:
e bsub -n 12 -R span[hosts=1] < my_parallel_job
export OMP_NUM_THREADS=12
e bsub -n 12 -R span[ptile=12] -a openmp < my_parallel_job
LSF sets it for you as number of procs per node
e bsub -n 1 -R “affinity[core(12)]” -R “rusage[mem=12000]" -a openmp
< my_parallel_job
o 1 job slot with 12 cores, 12000MB memory to that job slot...not per core

o Advantage: Can vary number of cores and/or memory without making any other

changes or calculations
sy

A Bravura Submission - Mixing it all together

Suppose you want to run a combined MPI-openMP job. One mpi process
per node, openMP in each MPI Rank:

bsub -n 20 -R span[ptile=1] -R affinity[core(8)] -a openmp < my_awsome_job

ptile=1 - one slot on each node
core(8) - 8 cores per job slot
openmp - will set OMP_NUM_THREADS on each node to 8

26

GPGPU (General Purpose Graphics Processor Unit)

e GPGPU resources on Minerva

GPU_Model
o interactive queue (1 GPU node)
o gpu/gpuexpress queue for batch v100 L AR e
a100 NVIDIAA100_PCIE_40GB
o GPU option specification:
a10080g NVIDIAA100_SXM4_80GB
-gpu num=Ngpus -R GPU_Model
h10080g NVIDIAH100_PCIE_80GB
e.g. -gpu num=4 -R h100nvl h100nvl NVIDIAH100_SXM5_80GB
140s NVIDIAL40S_PCIE_48GB

Ngpus : Number of GPU cards requested PER NODE.
To request GPU cards on the same node, “-R span[hosts=1]" MUST be added.

GPGPU (continue)

#BSUB -q gpu
#BSUB -n Ncpu

#BSUB -gpu num=4
#BSUB -R a100
#BSUB -R span[hosts=1]

module purge

module load anaconda3 (or 2)
module load cuda

source activate tfGPU

python -c "import tensorflow as tf"

submit to gpu queue
Ncpu is 1~48 on A100

request 4 GPUs on A100 node
request all gpu cards on the same node
The number of GPUs requested per node

to access tensorflow
to access the drivers and supporting
subroutines

GPGPU (continue)

o LSF will set CUDA VISIBLE_DEVICES to the list of GPU cards assigned to the job.

E.g: 2,1,3 Most standard packages honor these assignments

o DO NOT MANUALLY CHANGE THE VALUE OF CUDA _VISIBLE DEVICES.
o Multiple GPU cards can be requested across different GPU nodes

#BSUB -q gpuexpress # submit to gpuexpress queue

#BSUB -n 8 # 8 compute cores requested

#BSUB -R span[ptile=2] # 2 cores per node, so 4 nodes in total requested
#BSUB -R h100nvl # request specified gpu node h100nvl

#BSUB -gpu num=2 # 2 GPUs requested per node

Note that 2 GPU cards will be reserved on each of 4 nodes for your job. If your job cannot
/does not run in distributed mode, you will still lock these resources on the nodes that you
are not using and prevent others from being dispatched to those node.

CUDA_VISIBLE DEVICES may be defined differently on each of the nodes allocated to

your job.
Ty

GPGPU - Local SSD

A100 1.8 TB SATA SSD
A100-80GB 7.0 TB NVMe PCle SSD
H100-80GB, H100NVL, L40S 3.84 TB NVMe PCle SSD

o Make your own directory under /ssd and direct your temporary files there.
o Clean up your temporary files after completion.

#BSUB -q gpu

#BSUB -gpu hum=2

#BSUB -R a10080g

#BSUB -R span[hosts=1]

#BSUB -R rusage[ssd_gb=500]

#BSUB -E "mkdir /ssd/YourID_$LSB_JOBID"

#BSUB -Ep "rm -rf /ssd/YourID_$LSB_JOBID"
#BSUB ...

Array Job

» Groups of jobs with the same executable and resource requirements, but
different input files that can be indexed by numbers.

o -J“Jobnamel[index | start-end:increment]’
o Range of job index is 1~ 10,000

o LSB_JOBINDEX is set to array index

31

Array Job (continue)

$ bsub < myarrayjob.sh
Job <2946012> is submitted to queue <express>.

$ bjobs
JOBID USER JOB NAME STAT QUEUE FROM _HOST EXEC HOST
SUBMIT _TIME START_TIME TIME_LEFT

2946012 gail01 *rraytest[1] PEND express 1i03c03 - Sep 10 14:50
2946012 gail01 *rraytest[2] PEND express 1i03c03 - Sep 10 14:50
2946012 gail01 *rraytest[3] PEND express 1i03c03 - Sep 10 14:50
2946012 gail01 *rraytest[4] PEND express 1i03c03 - Sep 10 14:50
2946012 gail01 *rraytest[5] PEND express 1i03c03 - Sep 10 14:50
2946012 gail01 *rraytest[6] PEND express 1i03c03 - Sep 10 14:50
2946012 gail01 *rraytest[7] PEND express 1i03c03 - Sep 10 14:50
2946012 gail01 *rraytest[8] PEND express 1i03c03 - Sep 10 14:50
2946012 gail01 *rraytest}9] PEND express 1i03c03 - Sep 10 14:50
2946012 gail01 *raytest[10] PEND express 1i03c03 - Sep 10 14:50

Self-scheduler

» Submit large numbers of independent short serial jobs as a single batch

#!/bin/bash

#BSUB -q express
#BSUB -W 1:00
#BSUB -n 12
#BSUB -J selfsched
#BSUB -o test01

module load selfsched # load the selfsched module
mpirun -np 12 selfsched < test.inp # 12 cores, with one master process
$cat test.inp (test.inp: input for Self-Scheduler; a series of job commands)

/my/bin/path/my_program < input_jason > output_jason

/my/bin/path/my_program < input_tom > output_tom

/my/bin/path/my_program < input_jane > output_jane

#!/bin/bash

#BSUB -J myMPljob # Job name

#BSUB -P acc_bsr3101 # allocation account

#BSUB -q express # queue

#BSUB -n 64 # number of compute cores

#BSUB -R span|ptile=4] # 4 cores per node

#BSUB -R rusage[mem=4G] # 256 GB of memory (4 GB per core)
#BSUB -W 2:00 # walltime (2 hours.)

#BSUB -0 %J.stdout # output log (%J : JobID)

#BSUB -eo %J.stderr # error log

#BSUB -L /bin/bash # Initialize the execution environment
echo "Job ID : $LSB_JOBID"

echo "Job Execution Host : $LSB_HOSTS"
echo "Job Sub. Directory : $LS_SUBCWD"

module load python
module load selfsched
mpirun -np 64 selfsched < BunchOfSerialJobs.inp > BunchOfSerialdJobs.out

Common errors of batch jobs

1. Valid allocation account needed in the submission script

Request aborted by esub. Job not submitted.
e Use mybalance to see accessible accounts.
2. Reach memory limit

$ bhist -n 10 -1 107992756

Fri Jul 27 11:07:33: Completed <exit>; TERM_MEMLIMIT: job killed after
reaching LSF memory usage limit;

e memory based on one core, with 3000MB as default
e multithreaded applications need to be on the same node, such as STAR, BWA,...

3. No suitable hosts for the job
e Requested resource is non-exist : -n 256 -R span[hosts=1]

DOs and DON’Ts

e Request reasonable resource
o Prior knowledge needed. (Try short test runs before production to get a
reasonable estimate)

o User limit:
Max running jobs per user: 4,000
Max pending jobs per user: 20,000
Max num. of GPUs per user: 60
Global Memory limit: 30TB (20TB on CATS)

Heavy users: depending on the resource requested

o Monitor resource usage of a running job: “bjobs -/ JobID’

MEMORY USAGE:

MAX MEM: 68.1 Gbytes; AVG MEM: 37.4 Gbytes; MENIEfficiency: 79:83%

CPU USAGE:

CPU PEAK: 19.89 ; CPUIEficiency:199:43%

Tips for efficient usage of the queuing system

Find appropriate queue and nodes
o use -q interactive: for debug (both CPU and GPU with internet access)
o use -q express if walltime < 12h
o use himem node for memory intensive jobs

Memory request is per core in MB, not per job.

You can open an interactive session on a regular compute node, too.
bsub -q premium-n ... -W ... -P -Is /bin/bash
Job not start after a long pending time
o Whether the resource requested is non-exist:
-R rusage[mem = 100GB] -n 256 -R span[hosts=1]
o Runinto PM:

NOTE: Because of PM reservations, job may not run
until after Sat 21 Mar at 8:00PM

Job <6628109> is submitted to queue <premium>.

Scratch disk not backed up, efficient use of limited resources.
Job temporary dir configured to /local/JOBS instead of /tmp.

Final Friendly Reminder

e Acknowledge Scientific Computing and NIH at Mount Sinai in your publications
o Please acknowledge the support from Scientific Computing and Data at the Icahn School of Medicine
at Mount Sinai by including the following acknowledgement in a publication of any material, whether
copyrighted or not, based on or developed with Minerva HPC resources:
“This work was supported in part through the computational resources and staff expertise provided by Scientific
Computing and Data at the Icahn School of Medicine at Mount Sinai and supported by the Clinical and Translational
Science Awards (CTSA) grant ULITR004419 from the National Center for Advancing Translational Sciences.”

o Please further acknowledge the NIH S10 awards by including the following acknowledgement in a
publication of any material, whether copyrighted or not, based on or developed with NIH S10 funded

equipment (CATS-COVID and Translational Science Supercomputer):

“Research reported in this paper was supported by the Office of Research Infrastructure of the National Institutes of
Health under award number S100D030463. The content is solely the responsibility of the authors and does not
necessarily represent the official views of the National Institutes of Health.”

e Follow us by visiting https://labs.icahn.mssm.edu/minervalab

https://labs.icahn.mssm.edu/minervalab

Last but not Least

» Got a problem? Need a program installed? Send an email to:

hpchelp@hpc.mssm.edu

39

Acknowledgements
» Supported by the Clinical and Translational Science Awards (CTSA) grant

UL1TR004419 from the National Center for Advancing Translational
Sciences, National Institutes of Health.

CTS Clinical & Translational ©
Science Awards

40

