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Introduction to Large Language Models (LLMs)

▶ What are LLMs?

– LLMs are advanced deep learning models that can understand, generate, and

manipulate human language

– These models are trained on massive datasets containing billions of words,

allowing them to learn complex language patterns, grammar, and semantics

▶ Core Features of LLMs

– Massive Scale: LLMs are characterized by their enormous size, often

containing billions or even trillions of parameters

– Contextual Understanding: Unlike earlier models, LLMs use transformers,

enabling them to understand context, relationships between words, and the

broader meaning of sentences

– Transfer Learning: Pre-trained on diverse datasets and fine-tuned for specific

tasks, reducing the need for task-specific training data
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Evolution of LLMs

▶ Pre-2010s: Early NLP models relied on rule-based systems and statistical

approaches like n-grams and Hidden Markov Models (HMMs). These

models lacked understanding of context and were limited in scalability

▶ 2013: Introduction of Word2Vec, which used neural networks to generate

word embeddings. This was a major shift from purely statistical methods,
enabling words to be represented in vector space based on their

contextual usage

▶ 2015-2017: Rise of Recurrent Neural Networks (RNNs) and Long Short-

Term Memory (LSTM) networks, which could capture sequence-based

data. However, these models struggled with long-range dependencies and
were computationally expensive
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Evolution of LLMs

▶ The Transformer Breakthrough (2017):

– Transformers: Introduced by Vaswani et al. in the

paper "Attention is All You Need," the

transformer model replaced RNNs and LSTMs with
the self-attention mechanism, revolutionizing the
way NLP models processed information

– Advantages of Transformers: Unlike RNNs,
transformers process words in parallel, making them

faster and more scalable. This parallelization enabled
training on much larger datasets

– Attention Mechanism: The self-attention mechanism

allows transformers to focus on different parts of the
input text, improving their ability to understand context

and relationships within text
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Encoder Component

▶ Input Embedding:

– Converts the input text into a numerical form that the model can understand

– Example: If your sentence is "The cat sat on the mat", each word would be

transformed into a different numerical vector, like [0.2, 0.5, ...] for "The", [0.8,

0.1, ...] for "cat", and so on

▶ Positional Encoding:

– Adds information about the position of each word in the sentence

– The word "The" might be the first word in the sentence, so it gets a certain

positional encoding, and "cat" might be the second, so it gets another. This

encoding helps the model understand the word sequence

▶ Multi-Head Attention:

– This is where the model pays attention to different words in the sentence

simultaneously. It helps the model understand relationships between words

– Example: While processing "sat," the model might look at both "cat" (who

sat?) and "mat" (where?). Another head might focus on the relationship

between "The" and "cat”
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Encoder Component

▶ Add & Norm:

– Combines the original input (from the embedding) with the result of the attention 

mechanism. Then, it normalizes the data, making sure the values are balanced and 

the training process is smooth

– Example: The model combines the information from "sat" and the relationships it 

found (like how it relates to "cat" and "mat") and then adjusts the values to be on the 

same scale, which helps the model learn faster

▶ Feed Forward: 

– It’s like a standard neural network layer that refines the understanding of the 

relationships between words

– Example: After focusing on the relationships between words like "sat", "cat", and 

"mat," the model now processes this information more deeply, understanding that the 

"cat" is performing the action "sat" and the "mat" is where it happened

▶ Add & Norm

– Like before, the model combines the original data with the output from the Feed 

Forward layer and normalizes it again

– Example: The model continues refining its understanding of the sentence, ensuring 

the data stays balanced and ready for the next layers
7
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Decoder Component
▶ Decoder:

– The decoder works similarly to the encoder but has a specific task: generating the 

output, one word (token) at a time. It receives the previous word generated (e.g., the 

first word of the translation) as input

– Example: If the encoder processed "The cat sat on the mat," and the decoder is 

translating it into French, it might have already produced "Le chat" (The cat). Now, it 

uses this input to generate the next word in the sentence

▶ Masked Multi-Head Attention

– The model can only attend to previous words in the sentence, not future ones (hence 

the "masked"). This prevents the decoder from "cheating" and seeing future words 

before generating them

– Example: If it has already generated "Le chat", it cannot look ahead to the next words. 

Instead, it uses the previous context to decide the next word (maybe "s'assit" for "sat").

▶ Add & Norm: 

– Combines the results from the attention mechanism and normalizes the data again, 

keeping the learning process smooth

– Example: Combines the learned relationships from "Le chat" and balances the 

information before continuing
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Decoder Component

▶ Multi-Head Attention:

– The decoder looks at the output of the encoder. This is where the decoder learns from the 
original input sentence and adjusts its output accordingly

– Example: The decoder might look at the encoder’s understanding of "The cat sat on the mat" to 

decide the next word in the translation

▶ Add & Norm:

– The model combines the input with the attention results and normalizes them

– Example: The model balances all the learned relationships between words, refining the 

generation process

▶ Feed Forward:

– Like the encoder, the decoder has its own Feed Forward layer to process the combined 

information. This helps in refining the output word by word 

– Example: Based on what it learned from "Le chat", the decoder is now prepared to generate the 

next word in the translated sentence (e.g., "s'assit")

▶ Add & Norm:

– Another step of combining the learned relationships and balancing the values, preparing the 

data for the final prediction

– Example: The model further refines the current state of the translation before making the final 

word prediction 9

https://arxiv.org/abs/1706.03762



Decoder Component

▶ Linear Layer:

– Converts the processed data from the decoder into a set of raw scores
(called logits) for each possible word in the vocabulary

– Example: If the model is translating, the raw scores for possible next words

like "s'assit" (sat) or "reposait" (rested) are calculated

▶ Softmax Layer:

– Turns those raw scores into probabilities, indicating which word is the most
likely next word in the sentence

– Example: "s'assit" might get the highest probability (e.g., 0.9), so the model

selects that as the next word in the translation

▶ Final Output:

– The model continues this process of predicting word by word until it
completes the sentence

– Example: After predicting "Le chat s'assit", it continues generating the rest

of the translation
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LLM Releases
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Blue cards represent pre-trained models and orange cards correspond to instruction-tuned models

Models on the upper half signify open-source availability, whereas those on the bottom are closed-source



Popular LLM Models
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Model Organization Parameters

GPT 4 OpenAI 175+ billion

BERT Google 110 – 340 million 

PaLM 2 Google 340 billion

LLaMA 3 Meta 70 billion

T5 Google 220 million – 11 billion

Claude Anthropic 100+ billion

Falcon Technology Innovation 

Institute (TII)

180 billion



Why GPUs are Essential for LLMs?

▶ Parallel Processing:

– GPUs are designed to handle parallel computations, making them ideal for training 

large models like LLMs

– LLMs involve matrix operations that benefit significantly from the parallel nature of 

GPUs

▶ Memory Requirements:

– Training LLMs requires handling large datasets and models with billions of 

parameters, necessitating high GPU memory

– GPUs like the H100 and A100 offer sufficient memory bandwidth and capacity to 

handle these models efficiently

▶ Real-Time Inference:

– Inference is the process of using a trained model to make predictions

– GPUs accelerate inference by reducing the time taken to process each input, 

enabling real-time applications like chatbots and virtual assistants

13



Overview of H100 and A100 GPUs

▶ Architecture:

– CUDA Cores: Responsible for general-purpose computation, critical for large-scale AI and 
HPC tasks

– Tensor Cores: Specialized for deep learning operations, particularly matrix multiplications

• H100: Improved Tensor Cores with FP8 support for faster AI training

• A100: Tensor Cores optimized for mixed precision (FP16) training and inference

▶ Memory Capacity:

– H100: 80 GB 

– A100: 40 GB or 80 GB 

▶ Performance:

– H100: Up to 700 teraflops AI performance, enhanced for Transformer models and large 

LLMs

– A100: Up to 312 teraflops AI performance, suited for mixed precision and scientific 
workloads
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How LLMs Can Help Healthcare?

▶ Clinical Trial Optimization

– Patient Matching: LLMs can analyze patient data, medical histories, and 

genetic information to match eligible patients to clinical trials quickly and 

accurately, reducing the time and cost associated with recruitment

▶ Improved Patient Care

– Personalized Treatment Plans: LLMs can recommend treatment plans 

tailored to patient data, integrating research, guidelines, and real-time 

monitoring

– Drug Interaction Warnings: LLMs alert providers to potential drug interactions 

by cross-referencing a patient’s medication history with interaction databases

▶ Medical Research Advancement

– Literature Review & Data Synthesis: LLMs assist researchers by rapidly 

synthesizing new findings from a vast array of biomedical literature, helping 

identify new drug targets or potential therapies
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Training LLMs

▶ Pre-Training vs. Fine-Tuning:

– Pre-Training: Training on a large corpus of text to learn general 

language understanding

– Fine-Tuning: Tailoring the pre-trained model to a specific task, such 

as sentiment analysis

▶ Data Requirements:

– LLMs require vast and diverse datasets for effective learning

– Challenges: Managing data quality, balancing different types of text 

(e.g., clinical vs. general language)

– Example: PubMed for biomedical text, Wikipedia for general 
knowledge
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Zero-Shot, One-Shot, and Few-Shot Learning

▶ Zero-Shot Learning:

– The model can handle a task or classify data without any prior 

examples. It relies on general knowledge learned during pre-training 

to make predictions

▶ One-Shot Learning:

– The model can perform a task or recognize a class after being trained 

on just one example. It is especially useful in scenarios with limited 

data

▶ Few-Shot Learning:

– The model is trained with only a few examples per class and still 
achieves reasonable accuracy
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Hugging Face

▶ A leading platform for open-source natural language 

processing (NLP) models and tools

▶ Provides easy access to pretrained models and 
transformer architectures like BERT, GPT, and T5

▶ Hugging Face Model Hub hosts thousands of models 
for a wide range of tasks: translation, summarization, 

question answering, etc.

▶ Transformers in Healthcare:

– BioBERT and ClinicalBERT models, pretrained 

on biomedical and clinical data, are available via 
Hugging Face.

– MedGPT and COVID-Twitter-BERT (CT-BERT): 
Domain-specific transformers for healthcare 
challenges like COVID-19 tracking and drug 

discovery
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Tokenization

▶ Word, Sentence, and Subword Tokenization:

– Word Tokenization: Splits text into individual words. Example: “Natural Language 
Processing” → [“Natural”, “Language”, “Processing”]

– Sentence Tokenization: Splits text into sentences. Example: “I love NLP. It’s fascinating.” 

→ [“I love NLP.”, “It’s fascinating.”]

– Subword Tokenization: Breaks down words into smaller units. Useful for handling out-of-

vocabulary words. Example: “unhappiness” → [“un”, “happiness”]

▶ Tokenization for LLMs:

– Tokenization affects model performance by determining how text is represented as input

– Subword tokenization (e.g., Byte-Pair Encoding) is often used in LLMs to balance 
vocabulary size and input sequence length

▶ Popular Tokenizers:

– BERT Tokenizer: Uses WordPiece tokenization, suitable for understanding context in text

– GPT Tokenizer: Based on Byte-Pair Encoding, optimized for generating text
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Data Preprocessing for LLMs
▶ Tokenization with Transformers: Use pre-trained tokenizers from the Transformers library to 

match the model’s requirements
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from transformers import BertTokenizer

tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')

tokens = tokenizer(text, return_tensors='pt', padding=True, truncation=True, 

max_length=128)

▶ Efficient Tokenization: Tokenizing large datasets can be a bottleneck; use batching and 

parallel processing on GPUs

def batch_tokenize(texts, tokenizer, batch_size=32):

tokenized_batches = []

for i in range(0, len(texts), batch_size):

batch = texts[i:i + batch_size]

tokenized_batch = tokenizer(batch, return_tensors='pt', 

padding=True, truncation=True, max_length=128).to('cuda')

tokenized_batches.append(tokenized_batch)

return tokenized_batches



Why Fine-Tune Pre-Trained Models in Healthcare?

▶ Leverage Medical Knowledge: Pre-trained models (like BERT, GPT) 

learn general patterns. Fine-tuning adapts these models to understand 

specific medical data, like patient records and clinical trial results

▶ Enhance Accuracy: Fine-tuning improves performance in specialized 

healthcare tasks such as disease diagnosis, medical image analysis, and 
treatment recommendation

▶ Efficient with Limited Data: Healthcare data can be scarce or sensitive. 

Fine-tuning allows effective model training with small datasets, maintaining 

privacy and accuracy

▶ Faster Implementation: By fine-tuning, AI models can be quickly adapted 
for clinical use, providing real-time decision support in patient care
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Fine-Tuning Pre-Trained Model
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# Import necessary libraries

from transformers import BertForSequenceClassification, 

BertTokenizer, AdamW, get_linear_schedule_with_warmup

from torch.utils.data import DataLoader, TensorDataset

import torch

# 1. Load the pre-trained BERT model for sequence 

classification

# Setting num_labels=2 for binary classification

model = BertForSequenceClassification.from_pretrained('bert-

base-uncased', num_labels=2)

# Move the model to GPU for faster training

model.to('cuda')

# 2. Set up the BERT tokenizer for tokenizing input text

tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')



Fine-Tuning Pre-Trained Model
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# train_texts and train_labels in raw text form:

train_texts = ["Sample text for training", "Another text"]

train_labels = torch.tensor([1, 0])

# Tokenize the training data (convert text into input IDs and attention masks)

train_encodings = tokenizer(train_texts, truncation=True, padding=True, 

max_length=128, return_tensors="pt")

# Create TensorDataset with inputs and labels

train_dataset = TensorDataset(train_encodings['input_ids'], 

train_encodings['attention_mask'], train_labels)

# 3. Set up the DataLoader to handle batches of data

# DataLoader will load the data in batches and shuffle it for training

train_dataloader = DataLoader(train_dataset, batch_size=16, shuffle=True)



Fine-Tuning Pre-Trained Model
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# 4. Set up the optimizer (AdamW is the recommended optimizer for BERT)

optimizer = AdamW(model.parameters(), lr=1e-5)

# 5. Set up a learning rate scheduler (optional, but often helpful for fine-

tuning)

num_epochs = 3

total_steps = len(train_dataloader) * num_epochs

scheduler = get_linear_schedule_with_warmup(

optimizer, 

num_warmup_steps=0, 

num_training_steps=total_steps

)

# 6. Set up the training loop

# Set model to training mode

model.train()



Fine-Tuning Pre-Trained Model
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# Loop over the dataset for the specified number of epochs

for epoch in range(num_epochs):

print(f"Epoch {epoch+1}/{num_epochs}")

# Initialize total loss for this epoch

total_loss = 0

# Loop over each batch in the DataLoader

for batch in train_dataloader:

# Move input tensors (input_ids and attention_masks) and labels to GPU

input_ids = batch[0].to('cuda')

attention_masks = batch[1].to('cuda')

labels = batch[2].to('cuda')

# Clear previous gradients

optimizer.zero_grad()

# Perform forward pass: compute predictions and loss

# The model will return loss directly since labels are provided

outputs = model(input_ids, attention_mask=attention_masks, labels=labels)



Fine-Tuning Pre-Trained Model
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# Extract the loss

loss = outputs.loss

total_loss += loss.item()

# Backpropagate the gradients

loss.backward()

# Update model parameters with optimizer

optimizer.step()

# Update learning rate (if using scheduler)

scheduler.step()

# Print the average loss for this epoch

avg_loss = total_loss / len(train_dataloader)

print(f"Average loss: {avg_loss:.4f}")

# 7. Save the fine-tuned model for later use

model.save_pretrained('./fine_tuned_bert_model')

tokenizer.save_pretrained('./fine_tuned_bert_tokenizer')

# The fine-tuned model can now be used for inference or further evaluation.



Retrieval Augmented Generation (RAG)

▶ RAG combines large language models

(LLMs) with an external retrieval mechanism

to provide more accurate, context-aware

responses

▶ Benefits of RAG

– Improved Accuracy: Ensures answers

are based on the most relevant external

information.

– Domain-Specific Expertise: Custom

knowledge bases make the model
domain-adaptive, beneficial for

biomedical or specialized fields
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Retrieval Augmented Generation (RAG)
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# Import the necessary libraries

from ollama import Client

# Step 1: Initialize the Ollama Client

ollama_client = Client(host='http://10.95.46.104:57576')

# Step 2: Define a query for healthcare-related question

query = 'What are the main causes of cardiovascular disease?'

# Step 3: Implement a retrieval function to simulate fetching relevant healthcare documents

def retrieve_documents(query):

# Here, we're simulating the retrieval process with some mock data relevant to the 

healthcare domain.

results = [

"Document 1: Cardiovascular disease is caused by risk factors like high blood 

pressure, high cholesterol, and smoking.",

"Document 2: Other causes include diabetes, obesity, poor diet, and lack of physical 

activity.",

"Document 3: Family history and age also contribute to the likelihood of 

cardiovascular disease."

]

return results



Retrieval Augmented Generation (RAG)
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# Step 4: Retrieve relevant documents based on the query

retrieved_docs = retrieve_documents(query)

# Step 5: Format the retrieved documents and the user's query into the chat 

messages for the LLM

messages = [

{'role': 'user', 'content': query},

{'role': 'system', 'content': f"Retrieved information: {' 

'.join(retrieved_docs)}"}

]

# Step 6: Make the Ollama LLM request with the query and retrieved context

stream = ollama_client.chat(

model='tinyllama',

messages=messages,

stream=True,  # Stream the output for efficient handling

)

# Step 7: Stream and print the response from the LLM

for chunk in stream:

print(chunk['message']['content'], end='', flush=True)



Semantic MEDLINE

▶ An application offering biomedical document

retrieval, summarization, and visualization (29.1
million citations)

▶ Utilizes SemRep, a natural language processing

tool, to identify semantic relationships in biomedical
literature

▶ Literature Summarization: Helps researchers
quickly understand relationships in medical literature

▶ RAG: Combines LLM’s language generation with

real-time retrieval from the MEDLINE Knowledge
Graph

▶ Knowledge augmentation

30

https://link.springer.com/content/pdf/10.1186/1471-2105-14-182.pdf

https://lhncbc.nlm.nih.gov/ii/tools/SemRep_SemMedDB_SKR/SemMed.html

Semantic MEDLINE:

Unified Medical Language System (UMLS)
https://www.nlm.nih.gov/research/umls/index.html



Fine-Tuning vs. RAG

▶ Fine-Tuning:

– Best for long-term, slow-to-change tasks like adapting an LLM to a 

specific domain

– Focuses on training the model to incorporate domain-specific 

knowledge permanently

– Effective in ensuring consistent style and response tone for internal 

policies

▶ Retrieval-Augmented Generation (RAG):

– Best for dynamic, quick-to-change tasks like responding to rapidly 

evolving information (e.g., real-time data, customer records)

– Retrieves up-to-date context from external data sources at query time
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Hyperparameter Tuning

▶ Key Hyperparameters

– Learning Rate: Controls how much to change the model in response to the error at each 
update

– Batch Size: Number of samples processed before the model is updated

– Epochs: Number of complete passes through the training dataset

▶ Impact on Performance

– Learning Rate: Too high can overshoot the minima; too low can slow down convergence

– Batch Size: Larger sizes lead to more stable gradient estimates but require more memory

▶ Example Code
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# Adjust learning rate and batch size

optimizer = AdamW(model.parameters(), lr=2e-5)

train_dataloader = DataLoader(train_dataset, batch_size=16)



Distributed Training on Multiple GPUs
▶ Why Use Multiple GPUs?

– Distributes the computational load, reducing training time

– Enables the training of larger models by splitting data across GPUs

▶ Data Parallelism

– Approach: Split batches of data across multiple GPUs; each GPU computes gradients 
independently

– Code Example

33

model = torch.nn.DataParallel(model)

model.to('cuda')

▶ Model Parallelism

– Approach: Split the model itself across GPUs, useful for extremely large models.

model.model.encoder.layer[:6].to('cuda:0')

model.model.encoder.layer[6:].to('cuda:1')



Managing Large Datasets

▶ Use dataset loading strategies that minimize memory footprint, such as 

loading batches on the fly
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from torch.utils.data import DataLoader, Dataset

class CustomDataset(Dataset):

def __getitem__(self, index):

# Load data on the fly

return load_sample(index)

dataset = CustomDataset()

dataloader = DataLoader(dataset, batch_size=32, pin_memory=True)



Profiling and Debugging GPU Code: PyTorch Profiler
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import torch

import torch.profiler as profiler

import json

# Example: A simple PyTorch model

class SimpleModel(torch.nn.Module):

def __init__(self):

super(SimpleModel, self).__init__()

self.fc = torch.nn.Linear(10, 5)

def forward(self, x):

return self.fc(x)

# Initialize the model and move it to GPU if available

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

model = SimpleModel().to(device)

# Example input tensor

inputs = torch.randn(1, 10).to(device)

# Profile the model with CPU and CUDA activities

with profiler.profile(activities=[profiler.ProfilerActivity.CPU, 

profiler.ProfilerActivity.CUDA]) as prof:

# Run the model forward pass

model(inputs)

# Export the profiling results

trace_filename = 'trace.json'



Hands-On Example: Ollama LLM Platform on Minerva

▶ https://labs.icahn.mssm.edu/minervalab/documentation/ollama/
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Hands-On Example: Clinical Trial Matching Example
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from ollama import Client

# Step 1: Modified Patient Clinical Notes (for a guaranteed match)

patient_notes = """

Patient Jane Smith is a 45-year-old female diagnosed with HER2-negative invasive 

breast cancer in 2019. 

In 2021, brain metastases were confirmed via MRI, showing a lesion of 1.5 cm in the 

right frontal lobe. 

The patient has undergone prior radiation therapy for the brain metastasis, and the 

lesion has been stable over the last 6 months.

An MRI scan from April 2023 confirmed the lesion remains stable at 1.5 cm. The 

patient has no history of seizures and is otherwise healthy.

Her performance status is Zubrod 1, and she has normal blood counts with an ANC of 

1,600/mcL and platelets of 150,000/mcL.

Her hemoglobin is 10.0 g/dL. 

Her creatinine clearance is 40 mL/min, and she has normal liver function tests 

(bilirubin = 0.8 mg/dL, ALT = 20 U/L, and AST = 18 U/L).

The patient experienced mild neuropathy during her prior treatments but has no 

significant lingering adverse events.

She has not experienced more than two seizures in the last 28 days.

She is currently being considered for second-line treatment options and has not 

received any systemic cancer therapy in the past 30 days.

She has not been treated with sacituzumab govitecan before.

"""



Demo: Clinical Trial Matching Example
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# Step 2: Modified Clinical Trial Description (for a guaranteed match)

clinical_trial_description = """

This phase II trial studies the effect of sacituzumab govitecan in treating patients with HER2-negative 

breast cancer that has spread to the brain (brain metastases). Sacituzumab govitecan is a monoclonal 

antibody, called sacituzumab, linked to a chemotherapy drug, called govitecan. Sacituzumab is a form of 

targeted therapy because it attaches to specific molecules on the surface of cancer cells, known as 

Trop-2 receptors, and delivers govitecan to kill them. Giving sacituzumab govitecan may shrink the 

cancer in the brain and/or extend the time until the cancer gets worse.

Eligibility Criteria:

- Participants must have histologically confirmed HER2-negative invasive breast cancer that has 

metastasized to the brain.

- Participants must have MRI-confirmed central nervous system metastases with at least one measurable 

brain metastasis >= 1.0 cm in size that has been stable or progressed despite prior radiation therapy.

- Participants must have resolution of adverse event(s) from previous treatments to < grade 2 (except 

alopecia and =< grade 2 neuropathy).

- Zubrod performance status 0 or 1.

- Adequate organ function:

- ANC >= 1,500/mcL

- Platelets >= 100,000/mcL

- Hemoglobin >= 9.0 g/dL

- Total bilirubin =< 1.5 x ULN

- ALT and AST =< 3 x ULN

- Creatinine clearance >= 30 mL/min

- No leptomeningeal disease or more than 2 seizures in the last 28 days.

- No prior treatment with sacituzumab govitecan.

- No systemic cancer therapy within the past 30 days.

"""

https://www.cancer.gov/research/participate/clinical-trials-search/v?a=50&id=NCI-2020-07706&loc=0&rl=1&t=C4872



Demo: Clinical Trial Matching Example
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# Step 3: Initialize the Ollama Client

ollama_client = Client(host='http://10.95.46.104:52217') 

ollama_client.pull('llama3.2')  # Load the model

# Step 4: Define a function to query the LLM for patient-trial matching

def match_patient_with_trial(patient_notes, trial_description):

query = f"""

Based on the following patient clinical notes and clinical trial description, determine if the patient is eligible 

for the trial.

Respond clearly with either 'The patient is eligible' or 'The patient is not eligible,' followed by an 

explanation.

Patient Clinical Notes:

{patient_notes}

Clinical Trial Description:

{trial_description}

"""

# Stream response from Ollama LLM

stream = ollama_client.chat(

model='llama3.2', 

messages=[{'role': 'user', 'content': query}], 

stream=True

)

# Gather the full response

response_text = ""

for chunk in stream:

response_text += chunk['message']['content']

return response_text



Demo: Clinical Trial Matching Example
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# Step 5: Perform the matching and check if it's a match

def check_if_match(response_text):

# Lowercase response for easier comparison

response_text_lower = response_text.lower()

# Check for eligibility based on more flexible patterns

if "the patient is eligible" in response_text_lower:

return "Match"

elif "the patient is not eligible" in response_text_lower or "not eligible" in 

response_text_lower:

return "Not a Match"

else:

# If neither statement is clear, mark it as uncertain

return "Unclear - Need More Information"

# Perform the matching and print result

match_response = match_patient_with_trial(patient_notes, clinical_trial_description)

match_status = check_if_match(match_response)

print(f"LLM Response for Patient Matching:\n{match_response}")

print(f"\nIs the patient a match? {match_status}")



Important Reminder

▶ Need assistance? Feel free to contact us at:

hpchelp@hpc.mssm.edu
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