Load Sharing Facility (LSF) Minerva Scientific Computing Environment https://labs.icahn.mssm.edu/minervalab

Hyung Min Cho, PhD The Minerva HPC Team

October 9, 2024

Icahn School of Medicine at **Mount** Sinai

Outline

- LSF introduction and basic/helpful LSF commands
- Job submission and monitoring
- Interactive job
- Dependent job
- Parallel jobs: parallel processing and GPUs
- Job arrays and Self-scheduler
- Tips for efficient usage of the queuing system

Running Jobs on Minerva Compute Nodes

Access to compute resources and job scheduling are managed by IBM Spectrum LSF (Load Sharing Facility) batch system.

Prerequisite

- Must have a project allocation account.
- If you don't have one, ask your PI (or project authorizer) send a request at <u>hpchelp@hpc.mssm.edu</u>
- To see a list of accessible project accounts:

\$ mybalance

User_ID	Project_name	BODE/CATS
choh07	acc_hpcstaff	Yes
choh07	acc_DGXTrial	No

Basic LSF commands

- bsub
 Batch job submission
- bjobs Show your job status. Pending reasons
- **bkill** Kill a batch job
- **bmod** Modify the resource requirement of a **pending** job
- **bpeek** Display the stdout and stderr output of an unfinished job
- **bhist** Display historical information about a job
- **bqueues** Display information about queues
- **bhosts** Display load status information of each compute node

IBM LSF Documentation: https://www.ibm.com/docs/en/spectrum-lsf/10.1.0

Batch job submission example

\$ cat myfirst.lsf

#!/bin/bash
#BSUB -J myfirstjob
#BSUB -P acc_hpcstaff
#BSUB -q premium
#BSUB -n 1
#BSUB -W 6:00
#BSUB -R rusage[mem=4000]
#BSUB -oo %J.stdout
#BSUB -eo %J.stdout
#BSUB -eo %J.stderr
#BSUB -L /bin/bash

ml gcc

cd /sc/arion/work/MyID/my/job/dir/

../mybin/serial_executable < testdata.inp > results.log

\$ bsub < myfirst.lsf</pre>

Job <87426883> is submitted to queue <premium>.

Job name # REQUIRED; To get allocation account, type "mybalance" # queue; default queue is premium # number of compute cores (job slots) needed, 1 by default # REQUIRED; walltime in HH:MM # 4000 MB of memory request per "-n"; 3000 MB by default # output log (%J : JobID) # error log # Initialize the execution environment

Commands that you need to run

Batch job submission example (continue)

\$ cat mysecond.lsf

#!/bin/bash						
#BSUB -q premium	# queue					
#BSUB -R rusage[mem=4000]	# 4000 MB of memory request per "-n"; 3000 MB by default					
#BSUB -00 %J.stdout	# output log (%J : JobID)					
#BSUB -eo %J.stderr	# error log					
#BSUB -L /bin/bash	# Initialize the execution environment					
ml gcc	# Commands that you need to run					
cd /sc/arion/work/MyID/my/job/dir/						
/mybin/serial_executable < testdata.inp > results.log						

\$ bsub -q express -J mysecondjob -P acc_hpcstaff -n 1 -W 30 < mysecond.lsf Job <87426921> is submitted to queue <premium>.

If an option is given on both the bsub command line and in the job script, the command line option overrides the option in the script.

bsub major options

- -P accountName
- -q queuename
- -n ncpu
- -W wallClockTime
- -R rusage[mem=...]

of the form: acc_projectName

submission queue

number of cpu's requested (default: 1)

in form of HH:MM

amount of memory requested **per "-n"** in *MB*

Standard abbreviations (MB, GB, ...) can also be used.

max memory per node: ~163GB (Chimera, BODE compute), ~325GB (GPU V100, A100), ~1.4TB (himem, CATS), ~1.9TB (himem-GPU A100-80GB), ~435GB(GPU H100-80GB)

-R span[#-n's per physical node]

span[ptile=4] - 4 cores per node/host
span[hosts=1] - all cores on same node/host

-R himem

Request high memory node

bsub major options

- -o Name of output file (concatenated)
- -oo Name of output file (overwrite)
- ▶ -e Name of error file (concatenated)
- -eo Name of error file (overwrite)

NOTE: Default output is mailed to the user BUT since we have disabled mail response, it goes into the bit bucket.

If -o(o) is specified but not -e, error is appended to output file.

Minerva LSF queue structure

Queue structure in Minerva							
Queue	Wall time limit	available resources					
interactive (Dedicated to interactive jobs)	12 hours	4 nodes+1 V100 GPU nodes					
premium	6 days	275 nodes* + 37 himem nodes+BODE2*+CATS*					
express	12 hours	275 nodes* + 4 dedicated nodes (may change)+BODE2*+CATS*					
long	2 weeks	6 dedicated (288 cores) + 12 BODE2*					
gpu	6 days	40 V100*, 16 A100, 1 A100-80GB, 1 H100-80GB					
gpuexpress	15 hours	40 V100*, 16 A100, 1 A100-80GB, 1 H100-80GB					
private	unlimited	private nodes					

bjobs : status of jobs

Check your job: \$ bjobs JobID

JOBID USER JOB_NAME STAT QUEUE FROM_HOST EXEC_HOST SUBMIT_TIME START_TIME TIME_LEFT 87426883 choh07 myfirstjob PEND premium li03c03 - Mar 27 14:38 - -

Pending reasons: \$ **bjobs** -p JobID

JOBID USER JOB_NAME STAT QUEUE FROM_HOST EXEC_HOST SUBMIT_TIME START_TIME TIME_LEFT 87426883 choh07 myfirstjob PEND premium li03c03 - Mar 27 14:38 - - New job is waiting for scheduling;

Show full details about the job: **bjobs** - *l* JobID

bkill : terminate jobs in the queue

Lots of ways to get away with murder

- Kill by JobIDbkill 87426883Kill by JobNamebkill -J myjob
- Kill a bunch of jobs **bkill** -J myjob_*
- Kill all your jobs
- bs bkill 0

bpeek: display output of the job produced so far

- \$ bpeek 2937044
- << output from stdout >>
- "Hello Minerva"

<< output from stderr >>

bmod: modify submission options of "pending" jobs

bmod takes similar options to bsub

- bmod -R rusage[mem=20000] JobID
 - -R replaces <u>ALL</u> R fields not just the one you specify
- bmod -q express JobID

\$ **bmod** -q express 2937044

Parameters of job <2937044> are being changed

bhist : historical information

gail01@li03c03: ~ \$ bhist -n 5 -l 2937044

Job	<2937044>, Job Na	ame <myfirstjob>, User <gail01>, Project <acc_hpcstaff>, Ap</acc_hpcstaff></gail01></myfirstjob>
		<pre>plication <default>, Command <#!/bin/bash;#BSUB -J myfirst</default></pre>
		<pre>job;#BSUB -P acc_hpcstaff ;#BSUB -q premium;#BSUB -n 1;#B</pre>
		SUB -W 6:00 ;#BSUB -R rusage[mem=4000];#BSUB -o %J.stdout
		;#BSUB -eo %J.stderr;#BSUB -L /bin/bash ; module load gcc
		;which gcc;echo "Hello Chimera">
Tue	Sep 10 14:38:25:	Submitted from host <li03c03>, to Queue <premium>, CWD <\$H</premium></li03c03>
		OME>, Output File <%J.stdout>, Error File (overwrite) <%J.
		stderr>, Re-runnable, Requested Resources <rusage[mem=4000< td=""></rusage[mem=4000<>
		<pre>]>, Login Shell ;</pre>

RUNLIMIT

360.0 min of li03c03

MEMLIMIT

	3.9	G		
Tue	Sep	10	14:38:40:	Parameters of Job are changed:
				Job queue changes to : express;
Tue	Sep	10	14:39:36:	Dispatched 1 Task(s) on Host(s) <lc02a13>, Allocated 1 Slo</lc02a13>
				<pre>t(s) on Host(s) <lc02a13>, Effective RES_REQ <select[((hea< pre=""></select[((hea<></lc02a13></pre>
				<pre>lthy=1)) && (type == local)] order[!-slots:-maxslots] rusa</pre>
				<pre>ge[mem=4000.00] same[model] affinity[core(1)*1] >;</pre>
Tue	Sep	10	14:39:37:	Starting (Pid 399431);
Tue	Sep	10	14:39:39:	Running with execution home , Execution
				CWD , Execution Pid <399431>;
Tue	Sep	10	14:39:41:	Done successfully. The CPU time used is 1.5 seconds;
Tue	Sep	10	14:39:41:	Post job process done successfully;
MEM	DRY L	ISAG	E:	
MAX	MEM:	9	Mbytes; /	AVG MEM: 2 Mbytes
Sum	nary	of	time in se	econds spent in various states by Tue Sep 10 14:39:41
PI	END		PSUSP F	RUN USUSP SSUSP UNKWN TOTAL
7:	L		0 5	5 0 0 0 76

bhosts : Displays nodes and their load status

List all the compute nodes on Minerva

.

HOST_NAME	STATUS	JL/U	MAX	NJOBS	RUN	SSUSP	USUSP	RSV
filizm02-3	ok	-	24	1	1	0	0	0
lc01a05	closed	-	48	48	48	0	0	0
lc01a07	closed	-	48	48	16	0	0	32
lc04a19	unavail	-	48	0	0	0	0	0
lg03a01	ok	-	32	0	0	0	0	0
lg03a02	ok	-	32	17	17	0	0	0
Ih03c03	closed	-	48	48	48	0	0	0

bhosts: himem, gpu, bode, nonbode (major nodes), interactive

gail01@li03c03:	🗢 🖇 bhosts hi	mem						
HOST_NAME	STATUS	JL/U	MAX	NJOBS	RUN	SSUSP	USUSP	RSV
1h03c01	closed		48	48	48	0	Θ	0
1h03c02	closed		48	48	29	0	Θ	19
1h03c03	closed		48	48	26	0	Θ	22
1h03c04	closed		48	48	48	0	Θ	0
gail01@li03c03:	~ \$ bhosts gp	u						
HOST_NAME	STATUS	JL/U	MAX	NJOBS	RUN	SSUSP	USUSP	RSV
1g03a02	ok		32	Θ	0	0	Θ	0
1g03a03	closed		32	32	32	0	Θ	0
1g03a04	ok		32	1	1	0	Θ	0
1g03a05	ok		32	Θ	0	Θ	Θ	0
1g03a06	ok		32	Θ	0	0	Θ	0
1g03a07	closed		32	32	32	Θ	Θ	0
1g03a08	ok		32	Θ	0	Θ	Θ	0
lg03a09	ok		32	12	12	0	Θ	0
lg03a10	ok		32	Θ	0	0	Θ	0
lg03a11	ok		32	Θ	0	0	Θ	0
lg03a12	unavail		32	Θ	0	0	Θ	0
gail01@li03c03:	~ \$ bhosts bo	de head						
HOST_NAME	STATUS	JL/U	MAX	NJOBS	RUN	SSUSP	USUSP	RSV
lc01g17	ok		48	37	37	0	Θ	0
lc01g18	closed		48	48	48	0	0	0
lc01g19	ok		48	37	37	0	0	0
lc01g20	ok		48	37	37	0	0	0
lc01g21	ok		48	37	37	0	0	0
lc01g22	ok		48	17	17	0	0	0
lc01g23	ok		48	17	17	0	0	0
					-			

bhosts: himem, gpu, bode, cats, nonbode (major nodes), interactive

gail01@li03c03:	~ \$ bhosts	nonbode	head				The second s	
HOST_NAME	STATUS	JL/U	MAX	NJOBS	RUN	SSUSP	USUSP	RSV
lc01a05	closed		48	48	16	Θ	Θ	32
lc01a06	closed		48	48	18	Θ	Θ	30
lc01a07	closed		48	48	16	Θ	0	32
lc01a08	closed		48	48	16	Θ	Θ	32
lc01a09	closed	-	48	48	30	0	0	18
lc01a10	closed		48	48	12	Θ	Θ	36
lc01a11	closed		48	48	12	0	0	36
lc01a12	closed		48	48	14	Θ	0	34
lc01a13	closed		48	45	13	Θ	Θ	32

gail01@li03c03:	~ \$ bhosts	interactive						
HOST_NAME	STATUS	JL/U	MAX	NJOBS	RUN	SSUSP	USUSP	RSV
1c02a27	ok		48	1	1	Θ	Θ	Θ
1c02a28	ok		48	15	15	0	Θ	0
1c02a29	ok		48	2	1	Θ	Θ	1
1c02a30	ok		48	1	1	Θ	Θ	0
lg03a01	ok		32	Θ	Θ	Θ	Θ	Θ
1g03a02	ok		32	1	1	0	0	0

bqueues : information about all the available queues

[choh07@li03c03	~]\$	bqueues								
QUEUE_NAME	PRIC	STATUS	MAX	JL/U	JL/P	JL/H	NJOBS	PEND	RUN	SUSP
sla2	210	Open:Active					Θ	Θ	Θ	Θ
premium	200	Open:Active					4612	606	3776	Θ
admintest	200	Open:Active					Θ	Θ	Θ	Θ
sla	200	Open:Active					Θ	Θ	Θ	Θ
gputest	130	Open:Active					20	12	6	Θ
gngpu	130	Open:Active					1	1	Θ	Θ
private	130	Open:Active					235	94	141	Θ
cact	130	Open:Active					Θ	Θ	Θ	Θ
express	120	Open:Active					163	121	42	Θ
interactive	100	Open:Active					114	Θ	114	Θ
long	100	Open:Active					2898	2211	641	Θ
gpu	100	Open:Active					278	82	196	Θ
gpuexpress	100	Open:Active					19	Θ	19	Θ

Interactive access to compute resources

- Set up an interactive environment on compute nodes with **internet access**
- Useful for testing and debugging jobs
- Interactive GPU is available for job testing

bsub -P acc_hpcstaff -q interactive -n 4 -W 2:00 -R rusage[mem=4000] -R span[hosts=1] -XF -Is /bin/bash

- -Is: Interactive terminal/shell
- -XF: X11 forwarding
- /bin/bash : the shell to use

\$ bsub -P acc_hpcstaff -q interactive -n 4 -W 2:00 -R rusage[mem=4000] -R span[hosts=1]
-XF -Is /bin/bash
Job <2916837> is submitted to queue <interactive>.
<<ssh X11 forwarding job>>
<<<Waiting for dispatch ...>>
<<Starting on lc02a29>>

Dependent Job

Any job can be dependent on other LSF jobs.

Syntax

bsub -w 'dependency_expression' usually based on the job states of preceding jobs.

bsub -J myJ < myjob.lsf bsub -w '**done**(myJ)' < dependent.lsf

For more details about the dependency_expression:

https://www.ibm.com/docs/en/spectrum-lsf/10.1.0?topic=scheduling-dependency-conditions

Parallel Jobs

- **Distributed memory program**: Message passing between processes (e.g. MPI) Map-reduce(e.g. Spark)
 - Processes execute across multiple CPU cores or nodes
- **Shared memory program** (SMP): multi-threaded execution (e.g. OpenMP)
 - Running across multiple CPU cores on same node
- GPU programs: offloading to the device via CUDA
- Array job: Parallel analysis for multiple instances of the same program
 - Execute on multiple data files simultaneously
 - Each instance running independently

Message Passing Interface (MPI) Jobs

- This example requests 48 cores and 2 hours in the "express" queue.
 - Those 48 cores are dispatched **across multiple nodes**

```
#!/bin/bash
#BSUB -J myjobMPI
#BSUB -P acc_hpcstaff
#BSUB -q express
#BSUB -n 48
#BSUB -R span[ptile=8]
```

```
#BSUB -W 02:00
#BSUB -o %J.stdout
#BSUB -eo %J.stderr
#BSUB -L /bin/bash
```

cd \$LS_SUBCWD module load openmpi mpirun -np 48 /my/bin/executable < my_data.in

Apache Spark Jobs

• Use Isf-spark-submit.sh to launch job. See

https://www.ibm.com/docs/en/spectrum-lsf/10.1.0?topic=lsf-apache-spark

for full details

#!/bin/bash
#BSUB -J myjobSpark
#BSUB -P acc_hpcstaff
#BSUB -q express
#BSUB -n 48
#BSUB -W 02:00
#BSUB -o %J.stdout
#BSUB -eo %J.stderr
#BSUB -L /bin/bash

ml spark

Isf-spark-submit.sh --class "SimpleApp" target/scala-2.10/simple-project_2.10-1.0.jar ../myfile.txt

Multithreaded Jobs - OpenMP

- Multiple CPU cores within one node using shared memory
 - In general, a multithreaded application uses a single process which then spawns multiple threads of execution
 - It's highly recommended the number of threads is set to the number of compute cores
- Your program has to be written to use multi-threading

```
#!/bin/bash
#BSUB -J myjob
#BSUB -P YourAllocationAccount
#BSUB -q express
#BSUB -n 4
#BSUB -R "span[hosts=1]"
#BSUB -R rusage[mem=12GB]
#BSUB -W 01:00
#BSUB -o %J.stdout
#BSUB -eo %J.stderr
#BSUB -L /bin/bash
```

cd \$LS_SUBCWD export OMP_NUM_THREADS=4 /my/bin/executable < my_data.in

#sets the number of threads

Specifying a resource - OpenMP job

Span: define the shape of the slots you ask for:

- -n 12 -R span[hosts=1] allocate all 12 cores to one host
- -n 12 -R span[ptile=12] all 12 slots/cores must be on 1 node
- -n 24 -R span[ptile=12] allocate 12 cores per node = 2 nodes

OMP_NUM_THREADS must be set in script:

- bsub -n 12 -R span[hosts=1] < my_parallel_job export OMP_NUM_THREADS=12
- bsub -n 12 -R span[ptile=12] -a openmp < my_parallel_job
 LSF sets it for you as number of procs per node
- bsub -n 1 -R "affinity[core(12)]" -R "rusage[mem=12000]" -a openmp
 my_parallel_job
 - 1 job slot with 12 cores, 12000MB memory to that job slot...not per core
 - Advantage: Can vary number of cores and/or memory without making any other changes or calculations

A Bravura Submission - Mixing it all together

Suppose you want to run a combined MPI-openMP job. One mpi process per node, openMP in each MPI Rank:

bsub -n 20 -R span[ptile=1] -R affinity[core(8)] -a openmp < my_awsome_job</pre>

ptile=1 - one slot on each node

core(8) - 8 cores per job slot

openmp - will set OMP_NUM_THREADS on each node to 8

GPGPU (General Purpose Graphics Processor Unit)

- GPGPU resources on Minerva
 - interactive queue (1 GPU node)
 - gpu/gpuexpress queue for batch (22 GPU nodes)
- GPU option specification:

- V100: -gpu num=Ngpus -R v100
- A100: -gpu num=Ngpus -R a100

A100-80G: -gpu num=Ngpus -R a10080g

H100-80G: -gpu num=Ngpus -R h10080g

	V100	A100	A100-80GB	H100-80GB
# of nodes	10	8	2	2
GPU card	4 V100	4 A100	4 A100	<mark>4 H1</mark> 00
CPU cores	32	48	64	64
host memory	384GB	384GB	2TB	512GB
GPU memory	16 GB	40GB	80GB	80GB

CUDA 11.8 or higher is required to utilize H100.

GPGPU (continue)

#BSUB -q gpu #BSUB -n Ncpu

#BSUB -gpu num=4 #BSUB -R a100 #BSUB -R span[hosts=1]

module purge module load anaconda3 (or 2) module load cuda source activate tfGPU

python -c "import tensorflow as tf"

submit to gpu queue# Ncpu is 1~48 on A100

request 4 GPUs on A100 node# request all gpu card on the same node# The number of GPUs requested *per node*

to access tensorflow# to access the drivers and supporting subroutines

GPGPU (continue)

• LSF will set CUDA_VISIBLE_DEVICES to the list of GPU cards assigned to the job.

E.g: 2,1,3 Most standard packages honor these assignments

- DO NOT MANUALLY CHANGE THE VALUE OF CUDA_VISIBLE_DEVICES.
- Multiple GPU cards can be requested across different GPU nodes

#BSUB -q gpu	# submit to gpu queue
#BSUB -n 8	# 8 compute cores requested
#BSUB -R span[ptile=2] #BSUB -R v100 #BSUB -gpu num=2	<pre># 2 cores per node, so 4 nodes in total requested # request specified gpu node v100, change to a100, a10080g, or h10080g # 2 GPUs requested per node</pre>

Note that 2 GPU cards will be reserved on each of 4 nodes for your job. If your job cannot /does not run in distributed mode, you will still lock these resources on the nodes that you are not using and prevent others from being dispatched to those node.

CUDA_VISIBLE_DEVICES may be defined differently on each of the nodes allocated to your job.

GPGPU - Local SSD

A100	1.8 TB SATA SSD
A100-80GB	7.0 TB NVMe PCIe SSD
H100-80GB	3.84 TB NVMe PCIe SSD

- Make your own directory under /ssd and direct your temporary files there.
- Clean up your temporary files after completion.

```
#BSUB -q gpu
#BSUB -gpu num=2
#BSUB -R a10080g
#BSUB -R span[hosts=1]
#BSUB -E "mkdir /ssd/YourID_$LSB_JOBID"
#BSUB -Ep "rm -rf /ssd/YourID_$LSB_JOBID"
#BSUB ...
```

Array Job

- Groups of jobs with the same executable and resource requirements, but different input files that can be indexed by numbers.
 - -J "Jobname[index | start-end:increment]"
 - Range of job index is **1**~ 10,000
 - LSB_JOBINDEX is set to array index

#!/bin/bash
#BSUB -P acc_hpcstaff
#BSUB -n 1
#BSUB -W 02:00
#BSUB -q express
#BSUB -q express
#BSUB -J "jobarraytest[1-10]"
#BSUB -o logs/out.%J.%I
#BSUB -e logs/err.%J.%I
echo "Working on file.\$LSB_JOBINDEX"

Array Job (continue)

\$ bsub < myarrayjob.sh</pre>

Job <2946012> is submitted to queue <express>.

\$ bjobs

JOBID USER JOB_NAME STAT QUEUE FROM_HOST EXEC_HOST SUBMIT_TIME START_TIME TIME_LEFT

2946012	gail01 *rraytest[1] P	END express	li03c03 -	Sep 10 14:50	-	-
2946012	gail01 *rraytest[2] Pl	END express	li03c03 -	Sep 10 14:50	-	-
2946012	gail01 *rraytest[3] Pl	END express	li03c03 -	Sep 10 14:50	-	-
2946012	gail01 *rraytest[4] Pl	END express	li03c03 -	Sep 10 14:50	-	-
2946012	gail01 *rraytest[5] Pl	END express	li03c03 -	Sep 10 14:50	-	-
2946012	gail01 *rraytest[6] Pl	END express	li03c03 -	Sep 10 14:50	-	-
2946012	gail01 *rraytest[7] Pl	END express	li03c03 -	Sep 10 14:50	-	-
2946012	gail01 *rraytest[8] Pl	END express	li03c03 -	Sep 10 14:50	-	-
2946012	gail01 *rraytest[9] Pl	END express	li03c03 -	Sep 10 14:50	-	-
2946012	gail01 *raytest[10] P	PEND express	li03c03 -	Sep 10 14:50	-	-

Self-scheduler

• Submit large numbers of independent short **serial** jobs as a single batch

#!/bin/bash	
#BSUB -q express	
#BSUB -W 1:00	
#BSUB -n 12	
#BSUB -J selfsched	
#BSUB -o test01	
module load selfsched	# load the selfsched module
mpirun -np 12 selfsched < test.inp	# 12 cores, with one master process

\$cat test.inp

. . .

(test.inp: input for Self-Scheduler; a series of job commands)

/my/bin/path/my_program < input_jason > output_jason
/my/bin/path/my_program < input_tom > output_tom

/my/bin/path/my_program < input_jane > output_jane

Job submission script example: selfsched.lsf

#!/bin/bash
#BSUB -J myMPIjob
#BSUB -P acc_bsr3101
#BSUB -q express
#BSUB -n 64
#BSUB -R span[ptile=4]
#BSUB -R rusage[mem=4G]
#BSUB -W 2:00
#BSUB -o %J.stdout
#BSUB -eo %J.stderr
#BSUB -L /bin/bash

Job name # allocation account # queue # number of compute cores # 4 cores per node # 256 GB of memory (4 GB per core) # walltime (2 hours.) # output log (%J : JobID) # error log # Initialize the execution environment

echo "Job ID : \$LSB_JOBID" echo "Job Execution Host : \$LSB_HOSTS" echo "Job Sub. Directory : \$LS SUBCWD"

module load python module load selfsched mpirun -np 64 selfsched < BunchOfSerialJobs.inp > BunchOfSerialJobs.out

Common errors of batch jobs

1. Valid allocation account needed in the submission script

Project acc_project is not valid for user gail01

Request aborted by esub. Job not submitted.

- Use *mybalance* to see accessible accounts (note BODE/CATS eligible)
- 2. Reach memory limit
 - \$ bhist -n 10 -l 107992756

Fri Jul 27 11:07:33: Completed <exit>; TERM_MEMLIMIT: job killed after reaching LSF memory usage limit;

- memory based on one core, with 3000MB as default
- multithreaded applications need to be on the same node, such as STAR, BWA,...

3. No suitable hosts for the job

• Requested resource is non-exist : -n 128 -R span[hosts=1]

DOs and DON'Ts

- Request reasonable resource
 - **Prior knowledge needed.** (Try short test runs before production to get a reasonable estimate)
 - User limit:

Max running jobs per user: 4,000 Max pending jobs per user: 20,000 Max num. of GPUs per user: 14 Global Memory limit: 15TB Heavy users: depending on the resource requested

Monitor resource usage of a running job: "bjobs -I JobID"

MEMORY USAGE:

. . .

MAX MEM: 68.1 Gbytes; AVG MEM: 37.4 Gbytes; MEM Efficiency: 79.83%

CPU USAGE: CPU PEAK: 19.89 ; CPU Efficiency: 99.43%

Tips for efficient usage of the queuing system

- Find appropriate queue and nodes
 - use -q interactive: for debug (both CPU and GPU with internet access)
 - use -q express if walltime < 12h
 - use himem node for memory intensive jobs
- Memory request is **per core** in *MB, not per job.*
- You can open an interactive session on a regular compute node, too.
 bsub -q *premium* -n ... -W ... -P ... -Is /bin/bash
- Job not start after a long pending time
 - Whether the resource requested is non-exist:

```
-R rusage[mem = 100GB] -n 128 -R span[hosts=1]
```

• Run into PM:

- Scratch disk not backed up, efficient use of limited resources.
- Job temporary dir configured to /local/JOBS instead of /tmp.

Final Friendly Reminder

- <u>Acknowledge Scientific Computing and NIH at Mount Sinai in your publications</u>
 - Please acknowledge the support from Scientific Computing and Data at the Icahn School of Medicine at Mount Sinai by including the following acknowledgement in a publication of any material, whether copyrighted or not, based on or developed with Minerva HPC resources:

"This work was supported in part through the computational resources and staff expertise provided by Scientific Computing and Data at the Icahn School of Medicine at Mount Sinai and supported by the Clinical and Translational Science Awards (CTSA) grant UL1TR004419 from the National Center for Advancing Translational Sciences."

 Please further acknowledge the NIH S10 awards by including the following acknowledgement in a publication of any material, whether copyrighted or not, based on or developed with NIH S10 funded equipment (BODE2-Big Omics Data Engine 2 and CATS-COVID and Translational Science Supercomputer):

"Research reported in this paper was supported by the Office of Research Infrastructure of the National Institutes of Health under award number S10OD026880 and S10OD030463. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health."

Follow us by visiting <u>https://labs.icahn.mssm.edu/minervalab</u>

Last but not Least

► Got a problem? Need a program installed? Send an email to:

hpchelp@hpc.mssm.edu

Acknowledgements

 Supported by the Clinical and Translational Science Awards (CTSA) grant UL1TR004419 from the National Center for Advancing Translational Sciences, National Institutes of Health.

