Introduction to GPU/AI resources on Minerva Minerva Scientific Computing Environment https://labs.icahn.mssm.edu/minervalab

Jielin Yu, PhD The Minerva HPC Team

October 16 2024

Icahn School of Medicine at **Mount** Sinai

Outline

- What is GPU?
- GPU resources on Minerva
- User GPU Software Environment on Minerva
- Run GPU jobs in LSF

What is GPU?

- A graphics processing unit (GPU) is a specialized electronic circuit initially designed to accelerate computer graphics and image processing.
- GPUs can be used across a wide range of compute-intensive applications:
 - Al/Machine Learning
 - Simulations
 - Professional visualization
 - Gaming

	CPU vs GPU	
	СРИ	GPU
Function	Generalized component that handles main processing functions of a server	Specialized component that excels at parallel computing
Processing	Designed for serial instruction processing	Designed for parallel instruction processing
Design	Fewer, more powerful cores	More cores than CPUs, but less powerful than CPU cores

<u>reference</u>

GPU resources on Minerva

- GPU resources on Minerva
 - Current:
 - Interactive queue (1 GPU node)
 - gpu queue for batch (23 GPU nodes)
 - By Oct. 31 2024:
 - 51 additional nodes with 220 GPUs in total.

		C	Oct. 31 2024			
	V100	A100	H100	H100-NVlink	L40S	
# of nodes	12	8	2	2	47	4
GPU card/node	4 V100	4 A100	4 A100	4 H100	4 H100	8 L40S
CPU cores	32	48	64	64	96	96
host memory	384 GB	384 GB	2 TB	512 GB	1.5 TB	1.5 TB
GPU memory	16 GB	40 GB	80 GB	80 GB	80 GB	48 GB

User GPU Software Environment - Major packages

OS: Rocky 9.4 with glibc-2.34(GNU C library) available

- Packages with GPU support:
 - Schrödinger Suite, Amber tools, NAMD, Gromacs, Alpha Fold2, etc.
- Al tools with python/3.12.5
 - CuPy, cuDF, cuML, Numba, scikit-learn, Scanpy, Squidpy, etc.
 - Minerva Python instruction
- Al tools with conda
 - MONAI, Rapids, NVFlare, tensorflow, pytorch, etc.
 - Minerva conda instruction
- Al tools with singularity
 - Holoscan, BioNeMo, Parabricks, DeepVariant, etc.
 - Minerva singularity instruction
 - Minerva Singularity training
- Cuda toolkit versions up to 12.4.0
- Nsight Systems

User Software Environment - Anaconda Distribution

- https://labs.icahn.mssm.edu/minervalab/documentation/conda/
- To avoid incompatibilities with other python, clear your environment with module purge before loading Anaconda

\$ml purge

\$ml anaconda3/2020.11

\$conda env list # get a list of the env available (Or \$conda info --envs)

- User should install their own envs locally, (see more guide here)
 - → Use option -p PATH, --prefix PATH Full path to environment location (i.e. prefix).

\$conda create python=3.x -p /sc/arion/work/gail01/conda/envs/myenv

\$conda env create -p myenv -f environment.yml

→ Set envs_dirs and pkgs_dirs in .condarc file, specify directories in which environments and packages are located

\$conda create -n myenv python=3.x

 Set conda base auto-activation false conda config --set auto_activate_base false
 More at <u>Conda config guide</u> \$ cat ~/.condarc file

envs_dirs:

- /sc/arion/work/gail01/conda/envs
- pkgs_dirs:
- /sc/arion/work/gail01/conda/pkgs
- conda config --set auto_activate_base false

User Software Environment: Lmod

> 1000 modules, and different versions are supported on Minerva

Lmod Software Environment Module system implemented:

Search for module: \$module avail or \$module spider
 Check all available R versions \$ml spider R

......R/3.3.1, R/3.4.0-beta, R/3.4.0, R/3.4.1, R/3.4.3_p, R/3.4.3, R/3.5.0, R/3.5.1_p, R/3.5.1, R/3.5.2, R/3.5.3

- To check the detailed PATH setting in module files: **\$ml show R**
- Load module: \$ml python or \$module load python or \$ml python/2.7.16 (for a specific version)
- Unload module \$ml -gcc or \$module unload gcc gail01@li03c03: ~ \$ ml python
- List loaded modules: **\$ml** or **\$module list**
- Purge ALL loaded modules \$ ml purge
- Autocompletion with tab
- More at:
 - Minerva Lmod guide
 - Lmod user guide

```
gail01@li03c03: ~ $ ml python
gail01@li03c03: ~ $ ml
Currently Loaded Modules:
   1) gcc/8.3.0 2) python/3.7.3
gail01@li03c03: ~ $ ml python/2.7.16
The following have been reloaded with a version change:
   1) python/3.7.3 => python/2.7.16
gail01@li03c03: ~ $ ml -gcc
```

Ollama

- Ollama is a platform that enables users to interact with Large Language Models (LLMs) via an Application Programming Interface (API) https://github.com/ollama/ollama
- It is a powerful tool for generating text, answering questions, and performing complex natural language processing tasks. It provides access to various fine-tuned LLMs.
- We provide an Ollama wrapper script that allows you to start an Ollama server on Minerva's compute node and access it from your local machine through an API endpoint:

https://labs.icahn.mssm.edu/minervalab/documentation/ollama/

Interactive access to GPU resources

- Set up an interactive environment on compute nodes
- Useful for testing and debugging jobs

bsub -P acc_hpcstaff -q interactive -n 4 -W 2:00 -R rusage[mem=4000] -R span[hosts=1] -gpu num=1 -R v100 -XF -Is /bin/bash

- Interactive, gpu, gpuexpress can be specified for -q.
- -Is: Interactive terminal/shell
- -XF: X11 forwarding

0

Ο

- /bin/bash : the shell to use
- GPU option specification:
 - V100: **-gpu num**=Ngpus **-R** v100
 - A100: -gpu num=Ngpus -R a100
 - A100-80G: -gpu num=Ngpus -R a10080g
 - H100: -gpu num=Ngpus -R h10080g

Minerva LSF queues with GPUs

Queue structure in Minerva							
Queue	Wall time limit	available resources					
interactive (Dedicated to interactive jobs)	12 hours	4 nodes+1 V100 GPU nodes					
gpu	6 days	40 V100*, 16 A100, 4 A100-80GB, 4 H100-80GB					
gpuexpress	15 hours	40 V100*, 16 A100, 4 A100-80GB, 4 H100-80GB					

bhosts

- bhosts queue_name
 - bhosts gpu
 - bhosts gpuexpress

[[yuj25@li03c03	~]\$	bhosts	gpu							
HOST_NAME		STATUS		JL/U	MAX	NJOBS	RUN	SSUSP	USUSP	RSV
dg-p100		ok		-	20	19	8	0	0	11
lg03a03		ok			32	4	4	0	0	0
lg03a04		ok		-	32	5	5	0	0	0
lg03a07		ok		<u></u> 0	32	4	4	0	0	0
lg03a08		ok		-	32	8	8	0	0	0
lg03a10		ok			32	8	8	0	0	0
lg03a11		ok			32	8	8	0	0	0
lg03a12		ok		<u> </u>	32	0	0	0	0	0
lg06g28		ok		-	64	13	13	0	0	0
lg07c05		ok		<u></u> 0	48	37	37	0	0	0
lg07c06		ok		-	48	29	29	0	0	0
lg07c07		ok		- <u>-</u>	48	17	17	0	0	0
[lg07c08		ok		-	48	11	11	0	0	0
lg07c09		ok		-	64	24	24	0	0	0

Batch job submission example

\$ cat myfirst.lsf

#!/bin/bash
#BSUB -J myfirstjob
#BSUB -P acc_hpcstaff
#BSUB -q premium
#BSUB -n 1
#BSUB -W 6:00
#BSUB -R rusage[mem=4000]
#BSUB -oo %J.stdout
#BSUB -eo %J.stdout
#BSUB -eo %J.stderr
#BSUB -L /bin/bash

ml gcc

cd /sc/arion/work/MyID/my/job/dir/

../mybin/serial_executable < testdata.inp > results.log

\$ bsub < myfirst.lsf</pre>

Job <87426883> is submitted to queue <premium>.

Job name # REQUIRED; To get allocation account, type "mybalance" # queue; default queue is premium # number of compute cores (job slots) needed, 1 by default # REQUIRED; walltime in HH:MM # 4000 MB of memory request per "-n"; 3000 MB by default # output log (%J : JobID) # error log # Initialize the execution environment

Commands that you need to run

GPGPU - batch jobs

#BSUB -q gpu #BSUB -n Ncpu

#BSUB -gpu num=4 #BSUB -R a100 #BSUB -R span[hosts=1]

module purge module load anaconda3 (or 2) module load cuda source activate tfGPU

python -c "import tensorflow as tf"

submit to gpu queue
Ncpu is 1~48 on A100

request 4 GPUs per node on A100 node
#
request all gpu cards on the same node

to access tensorflow# to access the drivers and supporting subroutines

GPGPU - batch jobs (continue)

• LSF will set CUDA_VISIBLE_DEVICES to the list of GPU cards assigned to the job.

E.g: 2,1,3 Most standard packages honor these assignments

- DO NOT MANUALLY CHANGE THE VALUE OF CUDA_VISIBLE_DEVICES.
- Multiple GPU cards can be requested across different GPU nodes

#BSUB -q gpu	# submit to gpu queue
#BSUB -n 8	# 8 compute cores requested
#BSUB -R span[ptile=2] #BSUB -R v100 #BSUB -gpu num=2	<pre># 2 cores per node, so 4 nodes in total requested # request specified gpu node v100, change to a100, a10080g, or h10080g # 2 GPUs requested per node</pre>

Note that 2 GPU cards will be reserved on each of 4 nodes for your job. If your job cannot /does not run in distributed mode, you will still lock these resources on the nodes that you are not using and prevent others from being dispatched to those node.

CUDA_VISIBLE_DEVICES may be defined differently on each of the nodes allocated to your job.

GPGPU - Local SSD

- Make your own directory under /ssd and direct your temporary files there.
- Clean up your temporary files after completion.

	A100	1.8 TB SATA SSD
Current	A100-80GB	7.0 TB NVMe PCIe SSD
	H100	3.84 TB NVMe PCIe SSD
Oct 21 2024	L40S	3.84 TB NVMe PCIe SSD
UCI. 31 2024	H100	3.84 TB NVMe PCIe SSD

#BSUB -q gpu
#BSUB -gpu num=2
#BSUB -R v100
#BSUB_R snan[bosts=1]
#BSUB -E "mkdir /ssd/YourID_\$LSB_JOBID"

nvidia-smi

- A monitoring and management command line utility, nvidia-smi
- Only available on nodes with GPUs

NVID	IA-SMI	525.1	05.17 I	Driver	Version:	525.105.17	CUDA Versi	on: 12.0
GPU Fan	Name Temp	Perf	Persist Pwr:Usag	ence-M ge/Cap	Bus-Id 	Disp.A Memory-Usage	Volatile GPU-Util 	Uncorr. EC Compute M MIG M
0 N/A	NVIDIA 74C	A100 P0	-PCI 242W /	On 250W	0000000 537M:	0:06:00.0 Off iB / 40960MiB	 80%	E. Proces Disable
1 N/A	NVIDIA 49C	A100- P0	-PCI 126W /	On 250W	0000000 747M:	0:2F:00.0 Off iB / 40960MiB	 45%	E. Proces Disable
2 N/A	NVIDIA 28C	A100 P0	-PCI 32W /	On 250W	0000000 425M:	0:86:00.0 Off iB / 40960MiB	 0%	E. Proces Disable
3 N/A	NVIDIA 28C	A100- P0	-PCI 33W /	0n 250W	0000000 7261M	0:D8:00.0 Off iB / 40960MiB	 0%	E. Proces Disable

	Proces GPU	ses: GI	CI	PID	 Tvpe	Process name	GPU Memorv	+
Ì		ID	ID		======		Usage	i
	0 1 2 3	N/A N/A N/A N/A	N/A N/A N/A N/A	13439 113104 13439 115131	C C C C	macs/bin.AVX2_256/gmx_mpi ill/progs/bin/gmx_24_tmpi macs/bin.AVX2_256/gmx_mpi python	534MiB 744MiB 422MiB 7258MiB	

_

Minerva Ticket Submission

- Send an email to: <u>hpchelp@hpc.mssm.edu</u> to start a ticket.
- Information to include:
 - The error message or the location of the log file on Minerva.
 - use command "pwd" to check the current working directory.
 - All the commands you used to get the error message.
 - The location of the scripts used and how did you run the script.
 - Which node.
 - yuj25@<mark>li03c04</mark>
 - The job ID and location of the job script.
 - Job <<u>123456789</u>> is submitted to queue <premium>.
 - Please do not include any "<" in the email.

Friendly Reminder

- Never run jobs on login nodes
 - For file management, coding, compilation, etc., purposes only
- Never run jobs outside LSF
 - Fair sharing
 - Scratch disk not backed up, efficient use of limited resources
 - Job temporary dir configured to /local/JOBS instead of /tmp.
- Logging onto compute nodes is no longer allowed
- WE DO NOT BACKUP USER FILES. PLEASE ARCHIVE/BACKUP YOUR IMPORTANT FILES.
- Follow us by visiting https://labs.icahn.mssm.edu/minervalab
- Acknowledge Scientific Computing at Mount Sinai and NIH funding in your publications with the template <u>https://labs.icahn.mssm.edu/minervalab/policies/acknowledge-scientific-computing-at-mount-sinai/</u>

Acknowledgements

 Supported by the Clinical and Translational Science Awards (CTSA) grant UL1TR004419 from the National Center for Advancing Translational Sciences, National Institutes of Health.

Last but not Least

► Got a problem? Need a program installed? Send an email to:

hpchelp@hpc.mssm.edu

