# Accelerating Biomedical Data Science with GPUs: Practical Approaches and Tools

#### **Minerva Scientific Computing Environment**

https://labs.icahn.mssm.edu/minervalab

S M Shamimul Hasan, Ph.D. The Minerva HPC Team

October 23, 2024



Icahn School of Medicine at Mount Sinai

#### Outline

- GPU Architecture Fundamentals
- Ways to Accelerate with GPUs
  - Application-Based Solutions
  - GPU-Optimized Libraries
  - OpenACC Directives
  - CUDA Programming
  - Standard Language Parallelism

#### **GPU Architecture Fundamentals**

- GPUs are equipped with thousands of smaller, efficient cores that can perform simple tasks in parallel
- ► Key Architectural Components:
  - Streaming Multiprocessors (SMs)
    - The core computational units of a GPU
    - Each SM contains multiple CUDA cores, responsible for parallel data processing
    - SMs have their own L1 cache to store frequently accessed data and shared memory for fast data sharing between threads
    - Warp scheduling: SMs execute instructions in parallel, typically in groups of 32 threads (warps), which helps maximize throughput
  - L2 Cache
    - Shared by all SMs, which improves data access efficiency when multiple SMs need the same data
  - High-Bandwidth DRAM
    - Used for storing data
    - Data is fetched from DRAM to SMs via the L2 and L1 caches to optimize memory bandwidth usage



https://docs.nvidia.com/deepleaming/perf ormance/dl-performance-gpubackground/index.html

#### **GPU Architecture Fundamentals**

- Multiply-Add Operations:
  - One of the most frequent operations in neural networks is multiply-add, used to compute dot products in fully-connected and convolutional layers
  - GPUs are optimized for these operations, with each multiply-add operation counting as two floating-point operations (FLOPs). Modern GPUs can process millions to billions of these operations per second, making them ideal for AI and machine learning applications that require high computational throughput
- Tensor Cores and CUDA Cores:
  - Tensor Cores (introduced in Volta architecture) are specialized units for accelerating matrix multiplications, critical for machine learning
  - CUDA Cores handle general-purpose computing tasks when operations do not fit the matrix multiplication model, such as element-wise operations

### Ways to Accelerate with GPUs

- Application-Based Solutions
  - Directly leverage pre-built applications for immediate results
- GPU-Optimized Libraries
  - Utilize high-performance libraries for seamless acceleration
- OpenACC Directives
  - Simplify code modifications to accelerate existing applications easily
- CUDA Programming
  - Gain maximum performance through custom GPU code development
- Standard Language Parallelism
  - Flexibly integrate GPU acceleration using standard parallelism techniques

# Ways to Accelerate with GPUs: Application-Based Solutions

## **Key Applications Across Industries**

| Industry                    | Popular GPU-Accelerated Applications                                                                      |
|-----------------------------|-----------------------------------------------------------------------------------------------------------|
| Artificial Intelligence     | PyTorch, MXNet, TensorFlow, Caffe, Keras, Scikit-learn, ONNX, DeepStream                                  |
| Climate & Weather           | Cosmos, Gales, WRF, MPAS, NEMS, RegCM, GEM, ICON                                                          |
| Computational Finance       | O-Quant Options Pricing, Murex, MISYS, Numerix, GPUdb, RiskVal, CuQuant                                   |
| Data Science & Analytics    | Anaconda, H2O, OmniSci, RAPIDS, Dask, XGBoost, TensorRT, cuML                                             |
| Federal Defense & Security  | ArcGIS Pro, EVNI, SocetGXP, Cylance, FaceControl, Raytheon, Harris Geospatial, TensorVision               |
| Life Sciences               | Amber, LAMMPS, GROMACS, NAMD, Relion, VASP, AlphaFold, SCHRODINGER                                        |
| Manufacturing & Engineering | Ansys Fluent, Abaqus SIMULIA, AutoCAD, CST Studio Suite, Altair, Simcenter, OpenFOAM,<br>NASTRAN          |
| Media & Entertainment       | DaVinci Resolve, Premiere Pro CC, Redshift Renderer, Autodesk Maya, Blender, Nuke, Unreal Engine, 3ds Max |
| Medical Imaging             | Aidoc, PowerGrid, RadiAnt, NVIDIA Clara, Arterys, iCAD, Visage, Philips IntelliSpace                      |
| Oil & Gas                   | Echelon, RTM, SPECfem3D, Paradigm, Schlumberger Eclipse, PetroMod, JewelSuite, GeoTeric                   |
| Retail                      | Everseen, Deep North, Third Eye Labs, AWM, Malong, Clarifai, Antuit, Google Cloud Al                      |
| Supercomputing & HPC        | Chroma, GTC, MILC, QUDA, XGC, HPL, NWChem, VMD, BerkeleyGW                                                |

https://www.nvidia.com/en-us/accelerated-applications/

#### **Performance Gains of Standard Benchmarks: A100 vs Dual CPU**

| Application | Speedup on A100 vs Dual CPU |
|-------------|-----------------------------|
| Amber       | 13x – 39x                   |
| GROMACS     | 6x – 9x                     |
| LAMMPS      | 5x – 18x                    |
| NAMD        | 6x – 8x                     |
| Relion      | 4x – 5x                     |
| Chroma      | 32x                         |
| GTC         | 14x                         |
| MILC        | 32x                         |
| SPECfem3D   | 29x                         |
| FUN3D       | 13x                         |

https://labs.icahn.mssm.edu/minervalab/wp-content/uploads/sites/342/2024/05/FiveWays-HealthCare-April2024.pdf https://developer.nvidia.com/hpc-application-performance

#### **NVIDIA Parabricks for Alignment & Variant Calling**



https://developer.nvidia.com/blog/new-research-highlights-speed-and-cost-savings-of-clara-parabricks-for-genomic-analyses/

## **NVIDIA Parabricks for Alignment & Variant Calling**

- Alignment (BWA-MEM, Minimap2, STAR)
  - **GPU:** 11 minutes | **CPU:** ~4 hours
  - Input: FastQ files
- Gold Standard Processing & Quality Control (Sort BAM, Mark Duplicates, BQSR)
  - **GPU:** 6 minutes | **CPU:** ~9 hours
  - Metrics: BAM Metrics, Collect Multiple Metrics
  - Input/Output: BAM/CRAM
- High-Accuracy Variant Calling (DeepVariant, HaplotypeCaller, Mutect2)
  - **GPU:** 4-45 minutes | **CPU:** ~16-31 hours
  - Output: VCF/gVCF files

https://labs.icahn.mssm.edu/minervalab/wp-content/uploads/sites/342/2024/05/FiveWays-HealthCare-April2024.pdf

### NVIDIA BioNeMo

- NVIDIA BioNeMo is a generative AI platform for drug discovery that simplifies and accelerates the training of models on proprietary data, ensuring easy, scalable model deployment for drug discovery applications
- Key Features:
  - LLM for Proteins & Molecules: BioNeMo leverages transformer-based LLMs for biological and chemical data, including proteins, DNA, and small molecules
  - Pretrained Models: Offers access to pre-trained AI models optimized for tasks such as molecular property prediction, sequence generation, and structure-based drug design
  - Custom Model Training: Supports fine-tuning of models on proprietary datasets to meet specific research goals
  - Integration: Easily integrates with NVIDIA's GPU-accelerated platforms like Clara and AI frameworks, offering massive parallel processing capabilities

### **NVIDIA BioNeMo**

- MegaMolBART: A model for generating and learning representations of small molecules, useful in drug discovery and chemistry
- ESM-2nv 3B: A large protein model that predicts protein properties and aids in structure prediction and functional annotation
- EquiDock DB5 Model: Predicts protein-protein interactions, essential for understanding biological processes and drug design
- DiffDock Score Model: Generates ligand poses for drug-protein interactions, improving drug discovery efforts
- Geneformer: Analyzes single-cell gene expression, advancing research in personalized medicine and developmental biology

# Ways to Accelerate with GPUs: GPU-Optimized Libraries

#### **NVIDIA HPC Software Development Kit (SDK)**

| DEVELOPMENT            |           |                   | ANA               | LYSIS                      |           |          |
|------------------------|-----------|-------------------|-------------------|----------------------------|-----------|----------|
| Programming<br>Models  | Compilers | Core<br>Libraries | Math<br>Libraries | Communication<br>Libraries | Profilers | Debugger |
| Standard C++ & Fortran | nvcc nvc  | libcu++           | cuBLAS cuTENSOR   | HPC-X<br>MPI               | Nsight    | cuda-gdb |
| OpenACC & OpenMP       | nvc++     | Thrust            | cuSPARSE cuSOLVER | UCX SHMEM<br>SHARP HCOLL   | Systems   | Host     |
| CUDA                   | nvfortran | CUB               | cuFFT cuRAND      | NCCL                       | Compute   | Device   |

https://labs.icahn.mssm.edu/minervalab/wp-content/uploads/sites/342/2024/05/FiveWays-HealthCare-April2024.pdf

#### **GPU-Accelerated Libraries**

- ► Linear Algebra Libraries
  - cuBLAS: Basic Linear Algebra Subroutines
  - *cuBLASLt, cuBLASMp, cuBLASDx*: Lightweight, multi-process, and device-side BLAS extensions
  - cuTENSOR, cuTENSORMg: Tensor linear algebra, including multi-GPU support
- ▶ Linear Solvers & Sparse Matrix Operations
  - cuSOLVER, cuSOLVERMp: Dense and sparse direct solvers
  - cuSPARSE, cuSPARSELt: Sparse matrix BLAS and lightweight variants
- ► Fourier Transform & Random Numbers
  - cuFFT, cuFFTMp, cuFFTDx: Fast Fourier Transform variants
  - cuRAND: Random number generation
- ► Image, Video, and Compression
  - NPP, NPP+: Image, video, and signal processing
  - *nvJPEG, nvJPEG2000, nvTIFF*: JPEG and TIFF encode/decode
  - *nvCOMP*: Data compression/decompression

#### **CuPy: GPU-Accelerated Python Library**

- Overview: Open-source library that accelerates Python computations using NVIDIA CUDA for high performance on GPUs
- Performance: Achieves up to 100x speedups in tasks like linear algebra, deep learning, and random number generation
- NumPy/SciPy Compatible: Functions as a drop-in replacement for NumPy and SciPy with minimal code changes
- Custom Kernels: Allows easy creation and compilation of custom CUDA kernels for optimized operations
- Applications: Ideal for data science, machine learning, and scientific computing



https://cupy.dev/

#### **CuPy: GPU-Accelerated Python Library**

#### NumPy

#### CuPy

import numpy as np size = 10000 A = np.random.rand(size, size) B = np.random.rand(size, size) C = np.dot(A, B)

import cupy as cp size = 10000 A = cp.random.rand(size, size) B = cp.random.rand(size, size) C = cp.dot(A, B)

https://labs.icahn.mssm.edu/minervalab/wp-content/uploads/sites/342/2024/04/MountSinai\_accelerated\_general\_data\_science-compressed.pdf

#### cuNumeric: GPU-Accelerated NumPy Replacement

- Overview: cuNumeric is a drop-in replacement for NumPy, designed to scale computations across multiple GPUs and nodes without code changes.
- ► Key Features
  - Full NumPy functionality with GPU acceleration
  - Seamless integration with existing Python workflows
  - Leverages the Legate framework for distributed computing
- Use Case: Ideal for large-scale data processing tasks in scientific computing, machine learning, and AI
- Benefit: Significant performance gains in handling complex numerical computations on large clusters



https://developer.nvidia.com/cunumeric

#### **RAPIDS**

 RAPIDS is a collection of open-source software libraries and APIs that enables you to run complete data science and analytics pipelines entirely on GPUs

|                                     | Data Science and AI Applications         |                                 |
|-------------------------------------|------------------------------------------|---------------------------------|
|                                     | Accelerated Libraries                    |                                 |
| RAPIDS Accelerator for Apache Spark | Zero Code Change Accelerators for PyData | Distributed Computing with Dask |
| DataFrames SQL ML                   | Pandas Polars NetworkX XGBoost           | DataFrames ML Graph             |

| RAPIDS GP  | U Python and C++ | + Libraries |
|------------|------------------|-------------|
| DataFrames | ML               | Graph       |
| cuDF       | cuML             | cuGraph     |

CUDA

|       | Hardware    |             |
|-------|-------------|-------------|
| Cloud | Data Center | Workstation |



| Category          | CPU Libraries    | GPU Libraries (RAPIDS) |
|-------------------|------------------|------------------------|
| Data Processing   | Pandas           | cuDF                   |
| Machine Learning  | scikit-learn     | cuML                   |
| Graph Processing  | NetworkX         | cuGraph                |
| Geospatial Data   | GeoPandas, SciPy | cuSpatial              |
| Signal Processing | SciPy.signal     | cuSignal               |
| Image Processing  | scikit-image     | cuCIM                  |

#### cuDF

- A GPU-accelerated DataFrame library
- Similar to pandas, but utilizes the power of GPUs for enhanced performance
- Part of the RAPIDS AI framework developed by NVIDIA
- Designed for large-scale data processing and analytics
- Installable via Conda or Pip

```
import cudf as pd
import numpy as np
# Load a CSV file as a cuDF DataFrame
data gpu = pd.read csv("data/sample data.csv")
# Generate some statistics
mean values = data gpu.mean()
print("Mean of each column:\n", mean values)
# Filtering rows based on a condition
filtered data =
data gpu[data gpu['column name'] > 50]
# Display filtered data
filtered data.head(5)
```

https://labs.icahn.mssm.edu/minervalab/wp-content/uploads/sites/342/2024/04/MountSinai\_accelerated\_general\_data\_science-compressed.pdf

#### **CPU vs. GPU ETL Workflows**

- ► Time Consuming ETL (Extract, Transform, Load) Steps (CPU-Powered)
  - **Configure ETL**: Requires extensive configuration and manual work.
  - Data Download & Preparation: Long hours waiting for data downloads
  - **Frequent Restarts**: Restart workflows due to errors or missed steps
  - **Training Delays**: Minimal time left for model training, mostly focusing on data preparation
- ► Accelerated ETL and Training (GPU-Powered):
  - **Fast Configuration**: Rapid setup of ETL pipelines
  - Optimized Data Handling: Handles datasets with increased speed
  - Integrated Validation and Training: Time saved for comprehensive model training and validation
  - **Reduced Rework**: Minimized workflow restarts, leading to more efficient work cycles
- Takeaway: With GPU acceleration, data scientists spend significantly less time on repetitive ETL tasks, shifting their focus to training, testing, and optimizing machine learning models

| Algorithm                                                                          |
|------------------------------------------------------------------------------------|
| Density-Based Spatial Clustering of Applications with Noise (DBSCAN)               |
| Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) |
| K-Means                                                                            |
| Single-Linkage Agglomerative Clustering                                            |
| Principal Components Analysis (PCA)                                                |
| Incremental PCA                                                                    |
| Truncated Singular Value Decomposition (tSVD)                                      |
| Uniform Manifold Approximation and Projection (UMAP)                               |
| Random Projection                                                                  |
|                                                                                    |

| Category                                          | Algorithm                                                                                                                                 |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
|                                                   | Linear Regression                                                                                                                         |
|                                                   | Linear Regression with Lasso or Ridge Regularization                                                                                      |
|                                                   | ElasticNet Regression                                                                                                                     |
| Linear Models for<br>Regression or Classification | LARS Regression                                                                                                                           |
| Regression of Classification                      | Logistic Regression                                                                                                                       |
|                                                   | Naive Bayes                                                                                                                               |
|                                                   | Stochastic Gradient Descent (SGD), Coordinate Descent (CD), and Quasi-Newton (QN) (including L-BFGS and OWL-QN) solvers for linear models |

https://github.com/rapidsai/cuml

| Category                                             | Algorithm                                |
|------------------------------------------------------|------------------------------------------|
|                                                      | Random Forest (RF) Classification        |
|                                                      | Random Forest (RF) Regression            |
| Nonlinear Models for<br>Regression or Classification | Inference for decision tree-based models |
|                                                      | K-Nearest Neighbors (KNN) Classification |
|                                                      | K-Nearest Neighbors (KNN) Regression     |
|                                                      | Support Vector Machine Classifier (SVC)  |
|                                                      | Epsilon-Support Vector Regression (SVR)  |

https://github.com/rapidsai/cuml

| Category          | Algorithm                                                                                                                                                                                                                                                           |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Preprocessing     | Standardization, or mean removal and variance scaling /<br>Normalization / Encoding categorical features / Discretization /<br>Imputation of missing values / Polynomial features generation / and<br>coming soon custom transformers and non-linear transformation |
| Time Series       | Holt-Winters Exponential Smoothing                                                                                                                                                                                                                                  |
|                   | Auto-regressive Integrated Moving Average (ARIMA)                                                                                                                                                                                                                   |
| Model Explanation | SHAP Kernel Explainer                                                                                                                                                                                                                                               |
|                   | SHAP Permutation Explainer                                                                                                                                                                                                                                          |

https://github.com/rapidsai/cuml

#### Numba

- Numba is a just-in-time (JIT) compiler that translates Python code to machine code at runtime, significantly improving performance for numerical computations
- ► Key Features
  - **JIT Compilation:** Numba compiles Python functions at runtime for fast performance
  - **Easy Integration:** Works seamlessly with NumPy and pandas
  - Decorator-Based: Use the @jit decorator to accelerate Python functions without code changes
  - Support for GPUs: Numba can target NVIDIA GPUs for parallel computation (@cuda.jit)
- Benefits
  - Speed: Offers speed-ups comparable to compiled languages like C
  - Ease of Use: No need to rewrite Python code in C or other languages to get better performance
  - Parallelization: Enables easy parallel programming with features like GPU support

#### Numba

#### GPU

#### CPU

```
from numba import jit
@jit
def vector_add(a, b):
    n = len(a)
    result = np.zeros(n)
    for i in range(n):
        result[i] = a[i] + b[i]
    return result
```

```
# Vector addition on the CPU
result = vector_add(a, b)
```

```
from numba import cuda
@cuda.jit
def vector add gpu(a, b, result):
    i = cuda.grid(1)
    if i < len(a):
        result[i] = a[i] + b[i]
# Define grid and block size
threads per block = 256
blocks per grid = (len(a) + (threads per block - 1))
// threads per block
# Launch kernel
vector add gpu[blocks per grid,
threads per block] (a, b, result)
```

https://labs.icahn.mssm.edu/minervalab/wp-content/uploads/sites/342/2024/04/MountSinai\_accelerated\_general\_data\_science-compressed.pdf

### **Medical Open Network for Artificial Intelligence (MONAI)**

- Initiative by NVIDIA and King's College London
- ▶ Built to create an inclusive AI research community for healthcare imaging
- Collaboration includes academic and industry leaders
- Provides open-source PyTorch-based frameworks for:
  - Annotation, model building, training, deployment, and optimization
- Focus on reproducibility and collaboration
- Key components:
  - MONAI Core: Training AI models in healthcare imaging
  - MONAI Label: Smart image annotation
  - MONAI Deploy SDK: Convert models into deployable AI applications
  - MONAI Model Zoo: Pre-built medical imaging models

https://monai.io/ https://github.com/Project-MONAI

#### **NVIDIA Holoscan**

- NVIDIA Holoscan is the sensor processing platform that streamlines the development and deployment of AI and high-performance computing (HPC) applications for real-time insights
- Key Benefits
  - Sensor Processing: Supports video capture, ultrasound research, and legacy medical devices
  - Low Latency: Holoscan SDK helps measure end-to-end latency for video processing
  - Al Pipelines: Access Al reference pipelines for radar, high-energy light sources, endoscopy, ultrasound, and other streaming video applications
- Use Cases
  - Medical Devices: Real-time AI for surgery, helping clinical teams with patient-specific decisions
  - Edge Computing: Scalable AI solutions from surgery to satellites

#### **NVIDIA FLARE**

- NVIDIA FLARE (NVIDIA Federated Learning Application Runtime Environment) is a domainagnostic, open-source, and extensible SDK for Federated Learning
- ► Key Features:
  - Privacy-Preserving Algorithms: Protects data privacy with algorithms that prevent reverse engineering of model updates
  - Distributed Multi-Party Collaboration: Enables Al model development across diverse data sources without sharing data
  - Supports Popular ML/DL Frameworks: Integrates seamlessly with frameworks like PyTorch, TensorFlow, and more
  - Extensible Management Tools: Offers SSL certifications, admin console, and TensorBoard for experiment monitoring



https://developer.nvidia.com/flare

## Ways to Accelerate with GPUs: OpenACC Directives

#### **OpenACC Directives**

- OpenACC is a directive-based programming model for parallel computing, designed to make performance-portable code accessible to scientists and engineers across various HPC hardware platforms. It enables efficient parallelization without the complexities of lowlevel programming
- ► Key Benefits:
  - Simplified Code Parallelism: Use directives to easily identify parallel regions
  - Accelerator Ready: Ideal for many-core GPUs and multicore CPUs
  - Less Effort: Reduces development time and complexity compared to CUDA or OpenCL

#### С

#pragma acc directive [clause [,]
clause] ...

// Code to be executed in parallel

#### Fortran

| <pre>!\$acc directive [clause [,] clause]</pre>               |
|---------------------------------------------------------------|
| <br>! Code to be executed in parallel<br>!\$acc end directive |

#### https://labs.icahn.mssm.edu/minervalab/wpcontent/uploads/sites/342/2024/05/FiveWays-HealthCare-April2024.pdf

#### SAXPY Example: SAXPY is "Single-Precision A times X Plus Y" SAXPY in C SAXPY in Fortran

```
void saxpy with offset(int n, float a,
                                                subroutine saxpy with offset(n, a, x, y,
float *x, float *restrict y, int offset)
                                                offset)
                                                    real :: x(:), y(:), a
 #pragma acc kernels
                                                    integer :: n, i, offset
  for (int i = offset; i < n + offset; ++i)</pre>
                                                    !Sacc kernels
    y[i] = a * x[i - offset] + y[i];
                                                    do i = offset + 1, n + offset
                                                         y(i) = a * x(i - offset) + y(i)
                                                    end do
                                                    !Sacc end kernels
. . .
                                                end subroutine saxpy with offset
// Perform SAXPY on 1M elements with an
offset of 1000
                                                . . .
saxpy with offset(1 << 20, 2.5, x, y,</pre>
1000);
                                                 Perform SAXPY on 1M elements with an offset
                                                of 1000
. . .
                                                call saxpy with offset(2**20, 2.5, x, y, 1000)
```

# Ways to Accelerate with GPUs: CUDA Programming

### **CUDA Programming**

- ▶ What is CUDA?
  - CUDA (Compute Unified Device Architecture) is a parallel computing platform and programming model developed by NVIDIA
  - It enables developers to utilize the power of NVIDIA GPUs for general-purpose computing
- ► Key Features:
  - Parallel Computing: CUDA allows thousands of threads to execute concurrently, maximizing the utilization of the GPU.
  - Heterogeneous Programming: Code can run on both the CPU (host) and GPU (device), allowing for efficient division of tasks.
  - Flexible Memory Management: CUDA provides various types of memory (global, shared, constant) that can be optimized for different tasks.
- ► CUDA provides APIs for C/C++, Fortran, Python, Julia
- CUDA-aware MPI implementations include OpenMPI, MVAPICH, Spectrum MPI, and others

#### CUDA C

```
void saxpy offset serial(int n, float a,
                                                global
float *x, float *y, int offset)
   for (int i = offset; i < n + offset;
++i)
       y[i] = a * x[i - offset] + y[i];
// Perform SAXPY on 1M elements with an
offset of 1000
saxpy offset serial (4096 * 256, 2.0, x, y,
                                                offset of 1000
1000);
```

#### void saxpy\_offset\_parallel(int n, float a, float \*x, float \*y, int offset)

```
int i = blockIdx.x * blockDim.x +
threadIdx.x + offset;
if (i < n + offset) {
    v[i] = a * x[i - offset] + v[i];</pre>
```

// Perform SAXPY on 1M elements with an
offset of 1000
saxpy\_offset\_parallel<<<4096, 256>>>(n,
2.0, x, y, 1000);

https://labs.icahn.mssm.edu/minervalab/wp-content/uploads/sites/342/2024/05/FiveWays-HealthCare-April2024.pdf

# Ways to Accelerate with GPUs: Standard Language Parallelism

### **Standard Language Programming**

| ACCELERATED STANDARD LANGUAGES<br>ISO C++, ISO Fortran                                          | INCREMENTAL PORTABLE OPTIMIZATION<br>OpenACC, OpenMP                                                                       | PLATFORM SPECIALIZATION<br>CUDA                                                                       |
|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| <pre>std::transform(par, x, x+n, y, y,        [=](float x, float y){ return y + a*x; } );</pre> | <pre>#pragma acc data copy(x,y) { std::transform(par, x, x+n, y, y,    [=](float x, float y){     return y + a*x; })</pre> | <pre></pre>                                                                                           |
| <pre>do concurrent (i = 1:n)   y(i) = y(i) + a*x(i) enddo</pre>                                 | <pre>/// } #pragma omp target data map(x,y) {</pre>                                                                        | <pre>if (i &lt; n) y[i] += a*x[i]; } int main(void) {</pre>                                           |
| <pre>import cunumeric as np<br/><br/>def saxpy(a, x, y):<br/>y[:] += a*x</pre>                  | <pre>std::transform(par, x, x+n, y, y,     [=](float x, float y){         return y + a*x; }); }</pre>                      | cudaMemcpy(d_x, x,);<br>cudaMemcpy(d_y, y,);<br>saxpy<<<(N+255)/256,256>>>();<br>cudaMemcpy(y, d_y,); |
|                                                                                                 | ACCELERATION LIBRARIES                                                                                                     |                                                                                                       |
| Core Math                                                                                       | Communication Data Analytics                                                                                               | Al Quantum                                                                                            |

#### **Standard Language Programming**

#### Lulesh Hydronynamics Mini-app



https://developer-blogs.nvidia.com/wp-content/uploads/2022/01/Fig-2-Standard-C-1.png

## **User GPU Software Environment - Major packages**

#### OS: Rocky 9.4 with glibc-2.34(GNU C library) available

- Packages with GPU support:
  - Schrödinger Suite, Amber tools, NAMD, Gromacs, Alpha Fold2, etc.
- Al tools with python/3.12.5
  - CuPy, cuDF, cuML, Numba, scikit-learn, Scanpy, Squidpy, etc.
  - Minerva Python instruction
- Al tools with conda
  - MONAI, Rapids, NVFlare, tensorflow, pytorch, etc.
  - Minerva conda instruction
- Al tools with singularity
  - Holoscan, BioNeMo, Parabricks, DeepVariant, etc.
  - Minerva singularity instruction
  - <u>Minerva Singularity training</u>
- Cuda toolkit versions up to 12.4.0
- Nsight Systems

## **Important Reminder**

▶ Need assistance? Feel free to contact us at:

# hpchelp@hpc.mssm.edu

#### Acknowledgements

 Supported by the Clinical and Translational Science Awards (CTSA) grant UL1TR004419 from the National Center for Advancing Translational Sciences, National Institutes of Health.

