

Huiwen (hoi – won) Ju, Solutions Architect, Higher Education & Research, hju@nvidia.com 5/1/2024 Mount Sinai

**Accelerated Genomics Analysis with NVIDIA Parabricks & RAPIDS** 





# Agenda

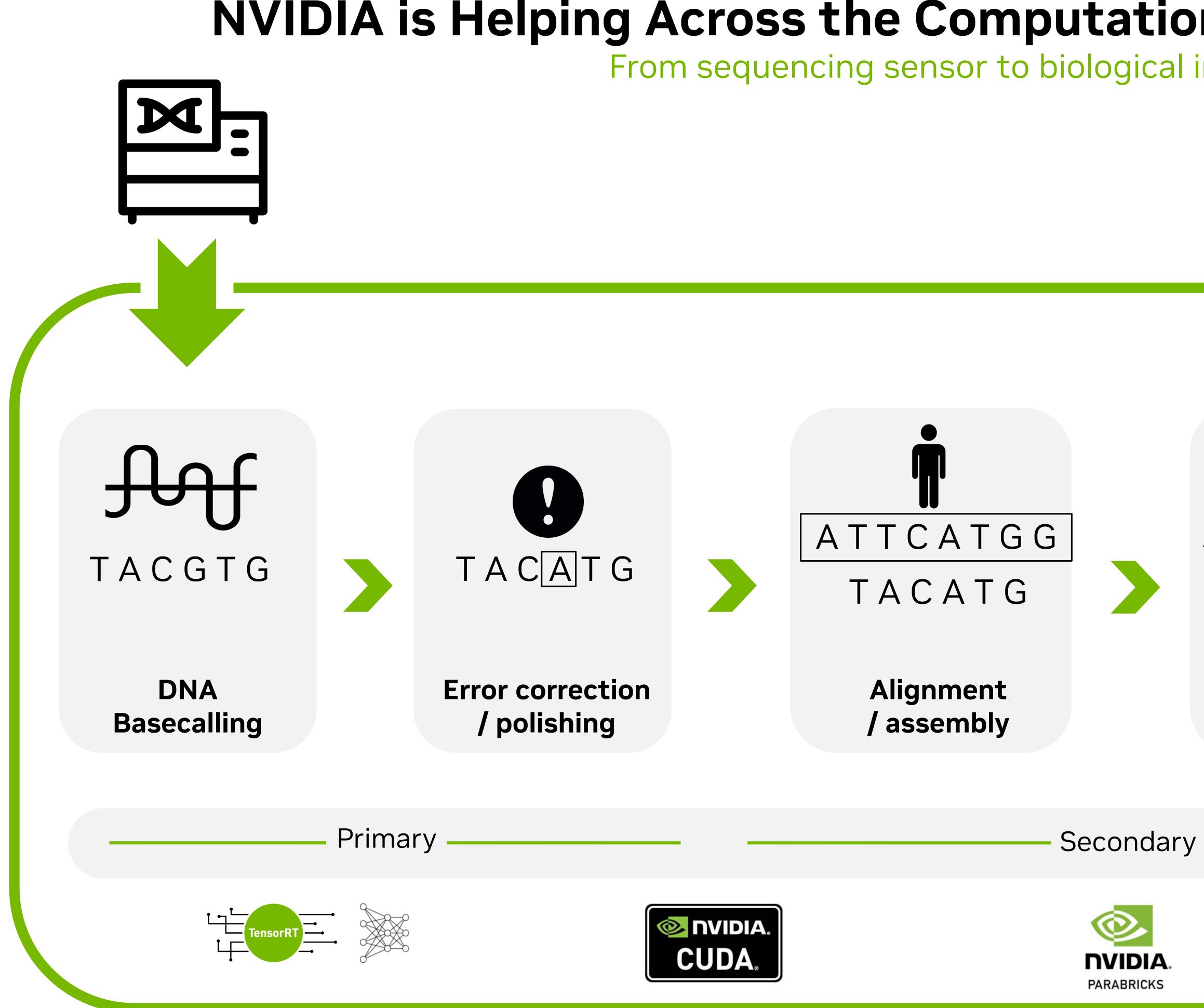
# NVIDIA Parabricks for secondary analysis RAPIDS for tertiary analysis, single-cell RNAseq analysis and spacial genomics



# Agenda

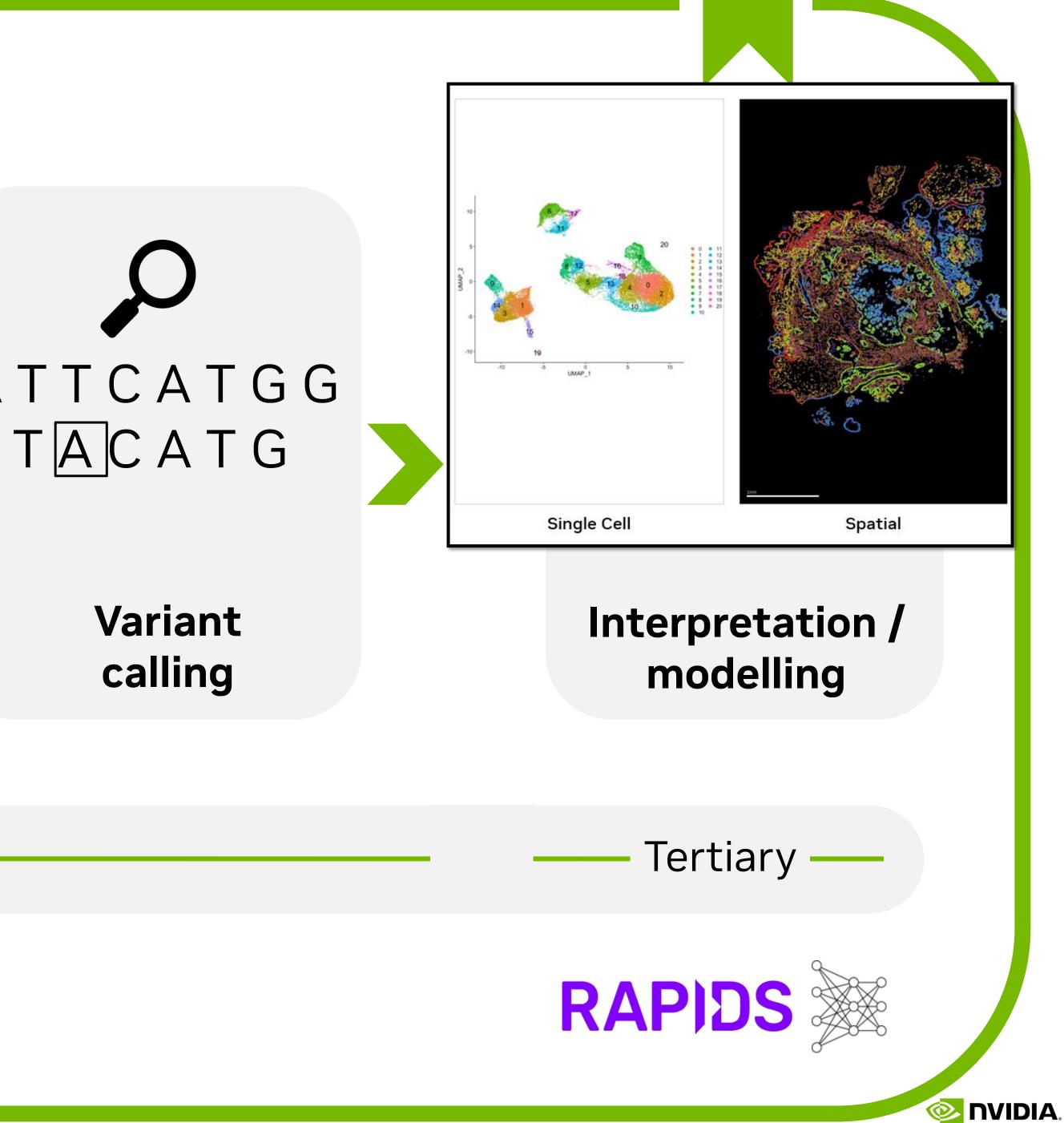
## NVIDIA Parabricks for secondary analysis RAPIDS for tertiary analysis, single-cell RNAseq analysis and spacial genomics





# **NVIDIA** is Helping Across the Computational Genomics Workflow From sequencing sensor to biological insights

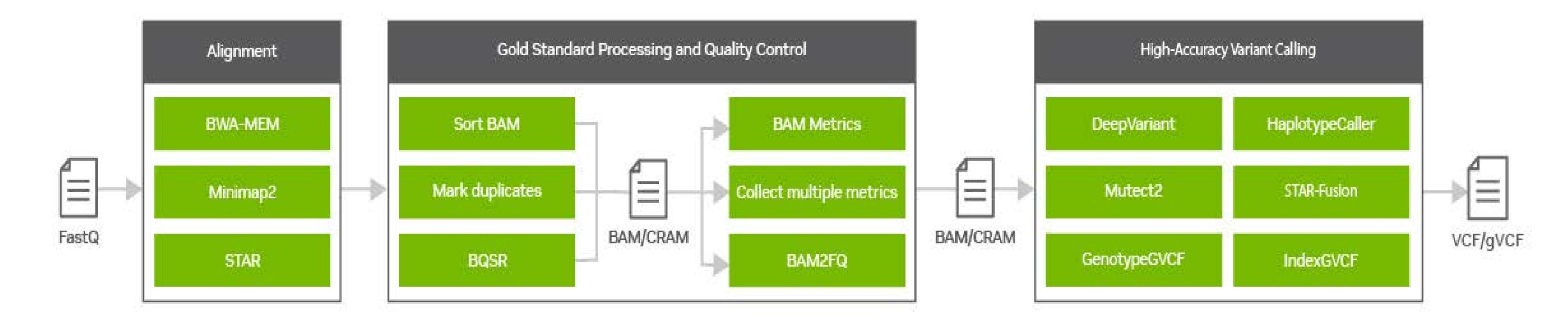


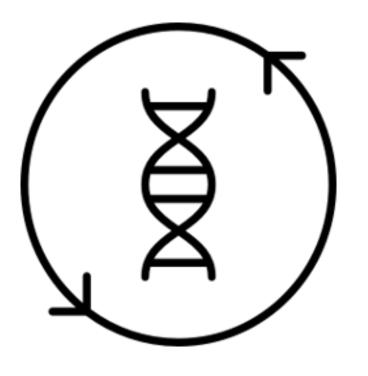






# **NVIDIA Parabricks for Alignment & Variant Calling** Speed, Scale, Accuracy





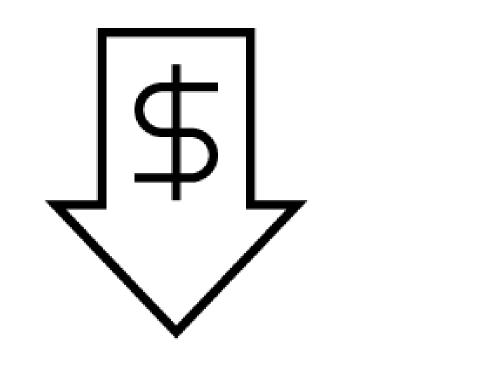
# **Universal Analysis**

Industry-standard tools for all major sequencers, ported to GPU

Up to 100x faster for WGS compared to CPU-only



## Up to 100x Acceleration



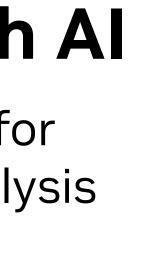
## **Up to 50% Lower Cost**

Up to 50% lower compute cost for WGS compared to CPU-only



## Higher Accuracy with AI

The power of deep learning for customized high accuracy analysis









## **Population Genomics**

# **Key Applications of NVIDIA Parabricks** Accelerated and Deep Learning Genomic Analysis

# 

## **Cancer Genomics**



# 

## **RNA Sequencing**

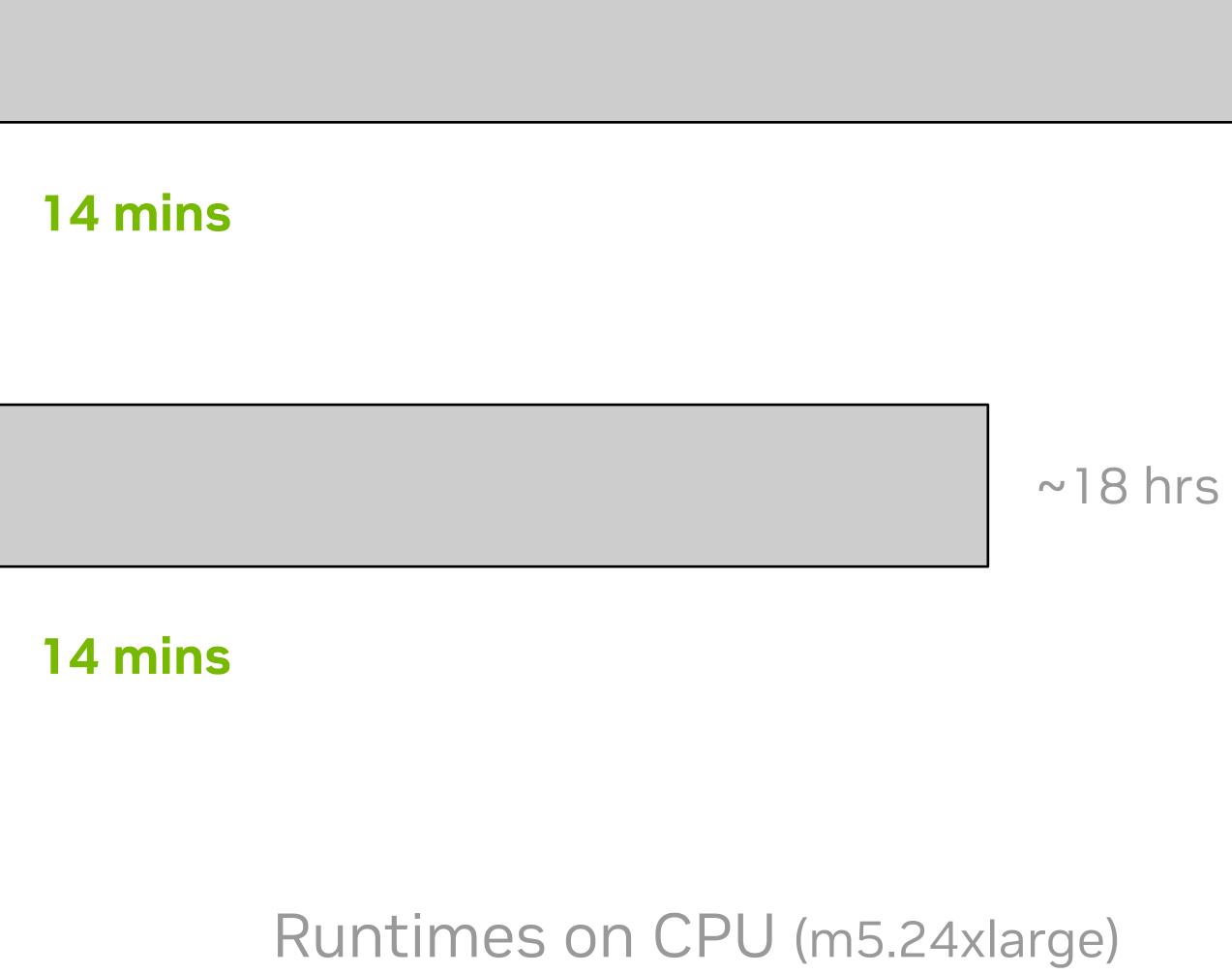


## End-to-end germline sample analysis with industry-standard tools in under 15 mins on the new NVIDIA H100 GPUs

Germline GATK (FQ2BAM + HaplotypeCaller)

> Germline DeepVariant (FQ2BAM + DeepVariant)

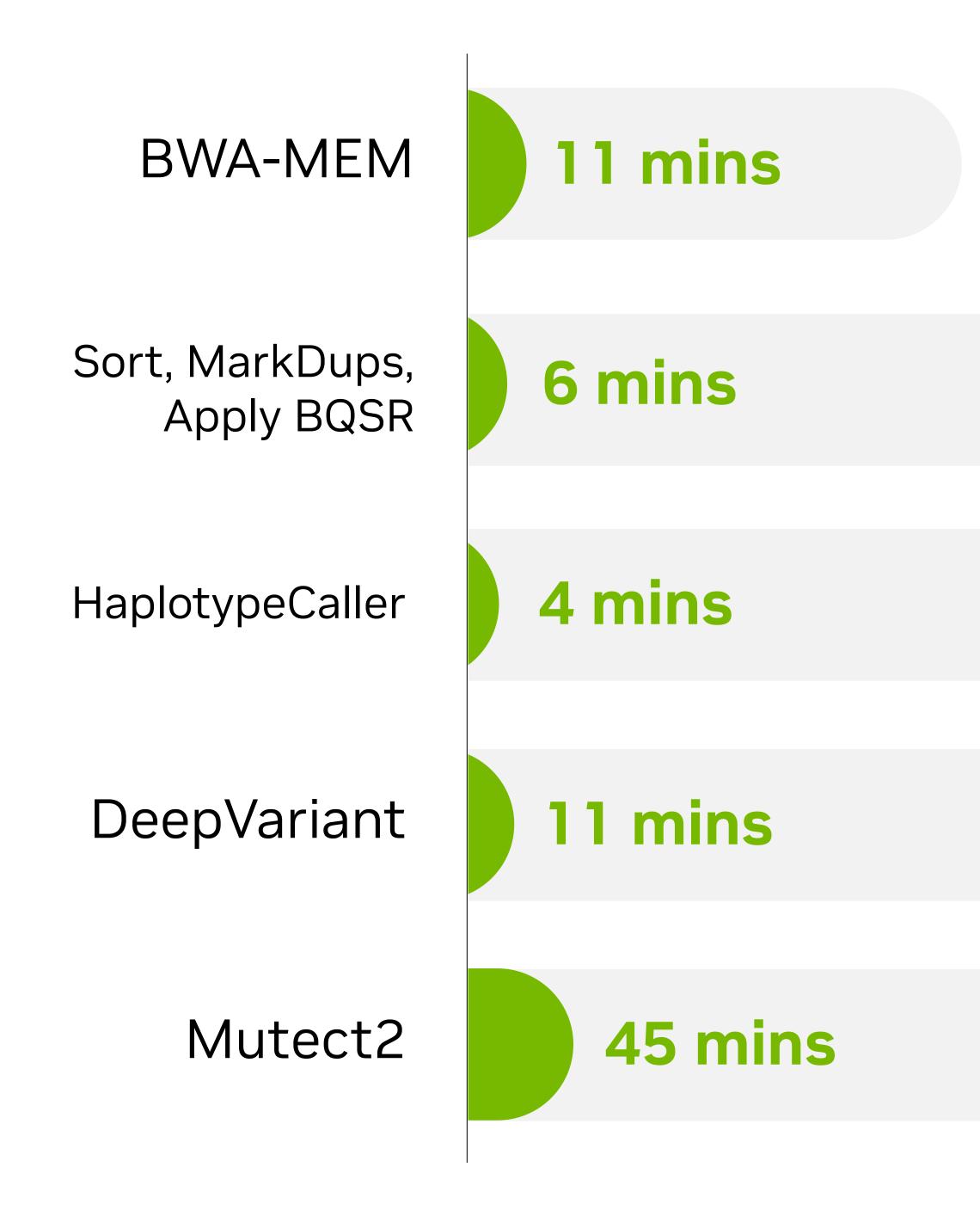
# **Higher Speed** From hours to minutes



Runtimes on NVIDIA GPU (8xH100)

~30 hrs





#### v3.8 Benchmarks

Dataset: HG002 30x WGS, except Mutect2 on SEQC2 50x WGS CPU: m5.24xlarge; GPU: 8xA100, except DeepVariant & Mutect2 on 8xV100

# Up to 80x Acceleration Gold-standard results, faster

~4 hrs

~9 hrs

~16 hrs





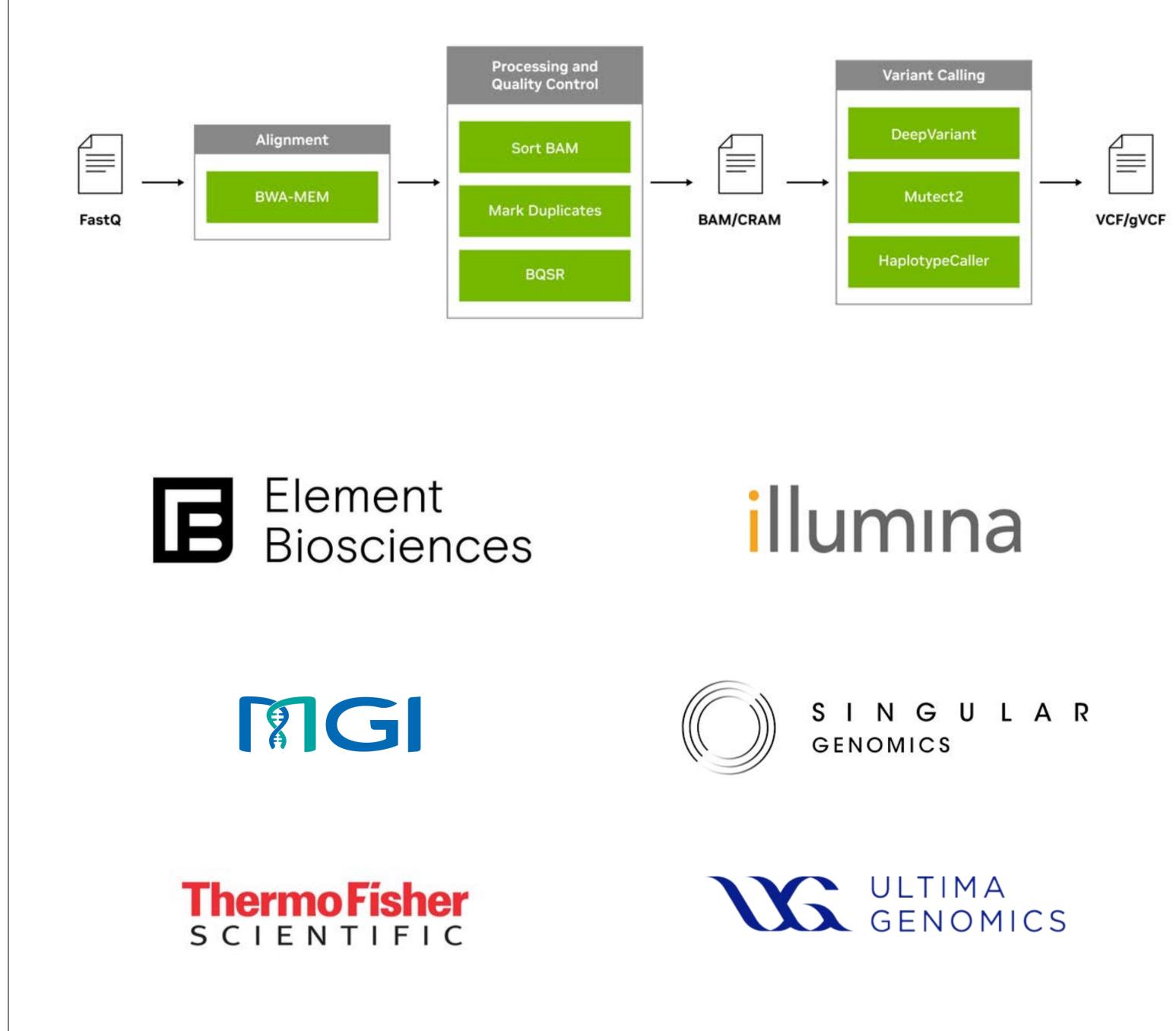


# Runtimes on CPU Runtimes on NVIDIA GPU

~31 hrs



# Short-Read



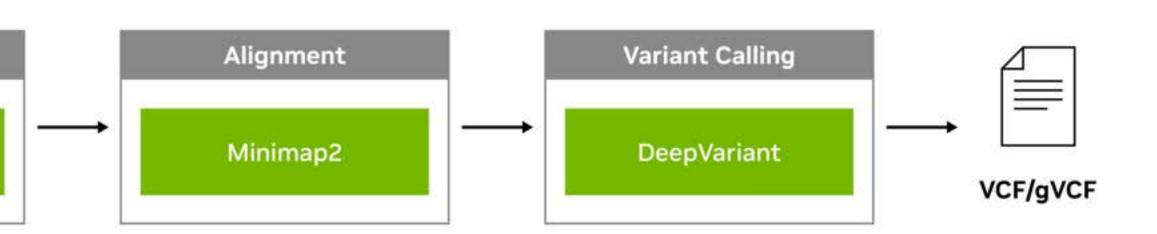
# **A Universal Analysis Solution**

**Basecalling/Polishing** Dorado DeepConsensus





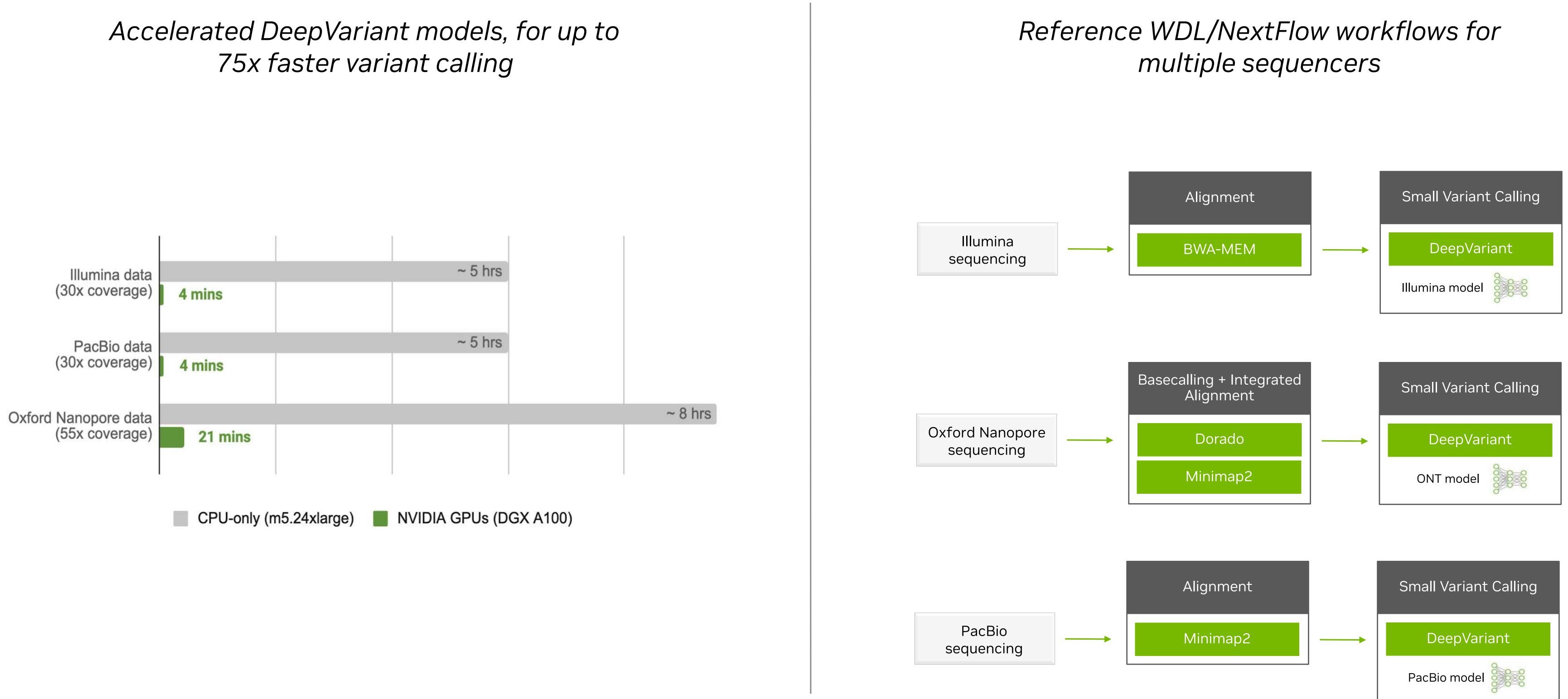
# Long-Read











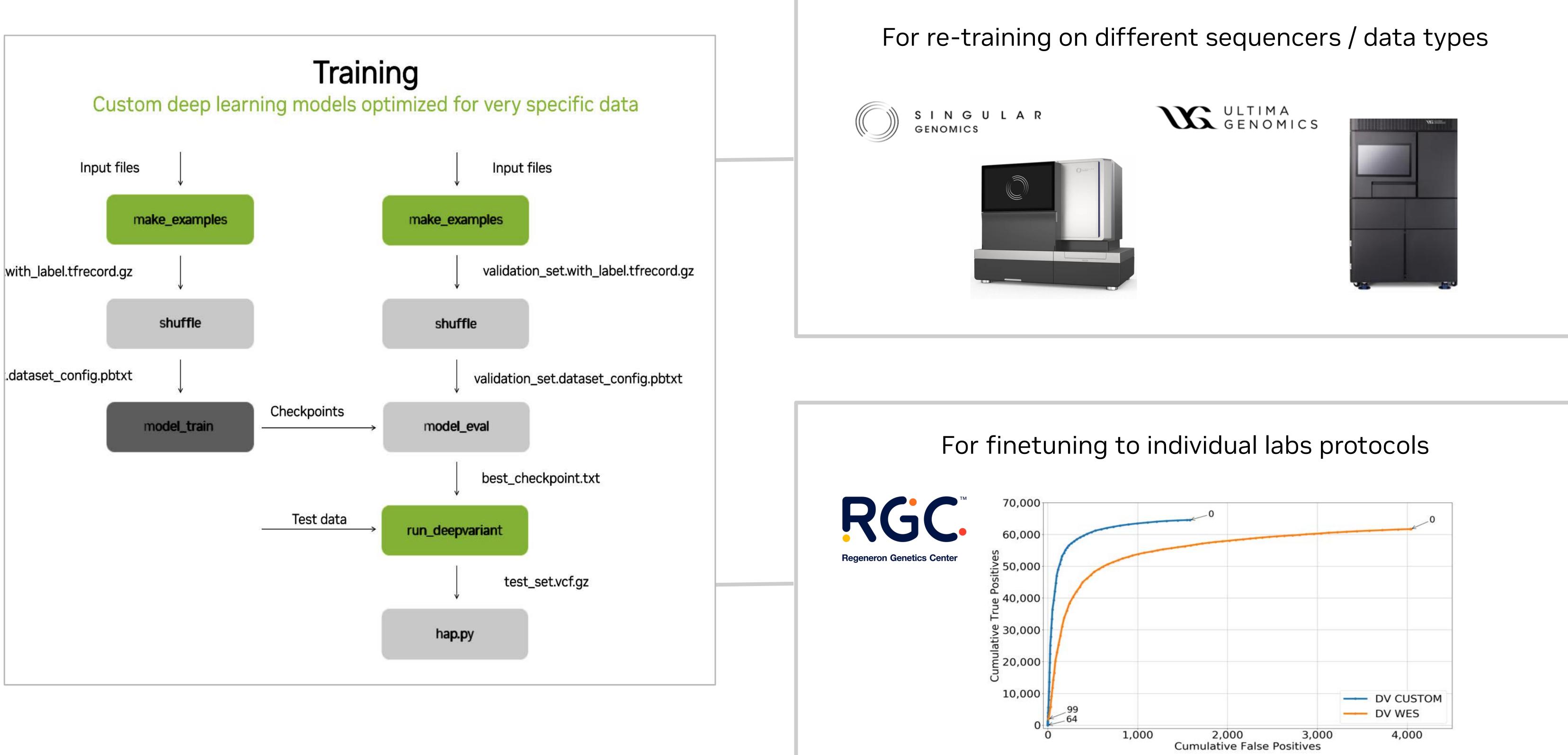
# **Universal Sequencing Analysis**

The only hardware-accelerated solution for multiple sequencers



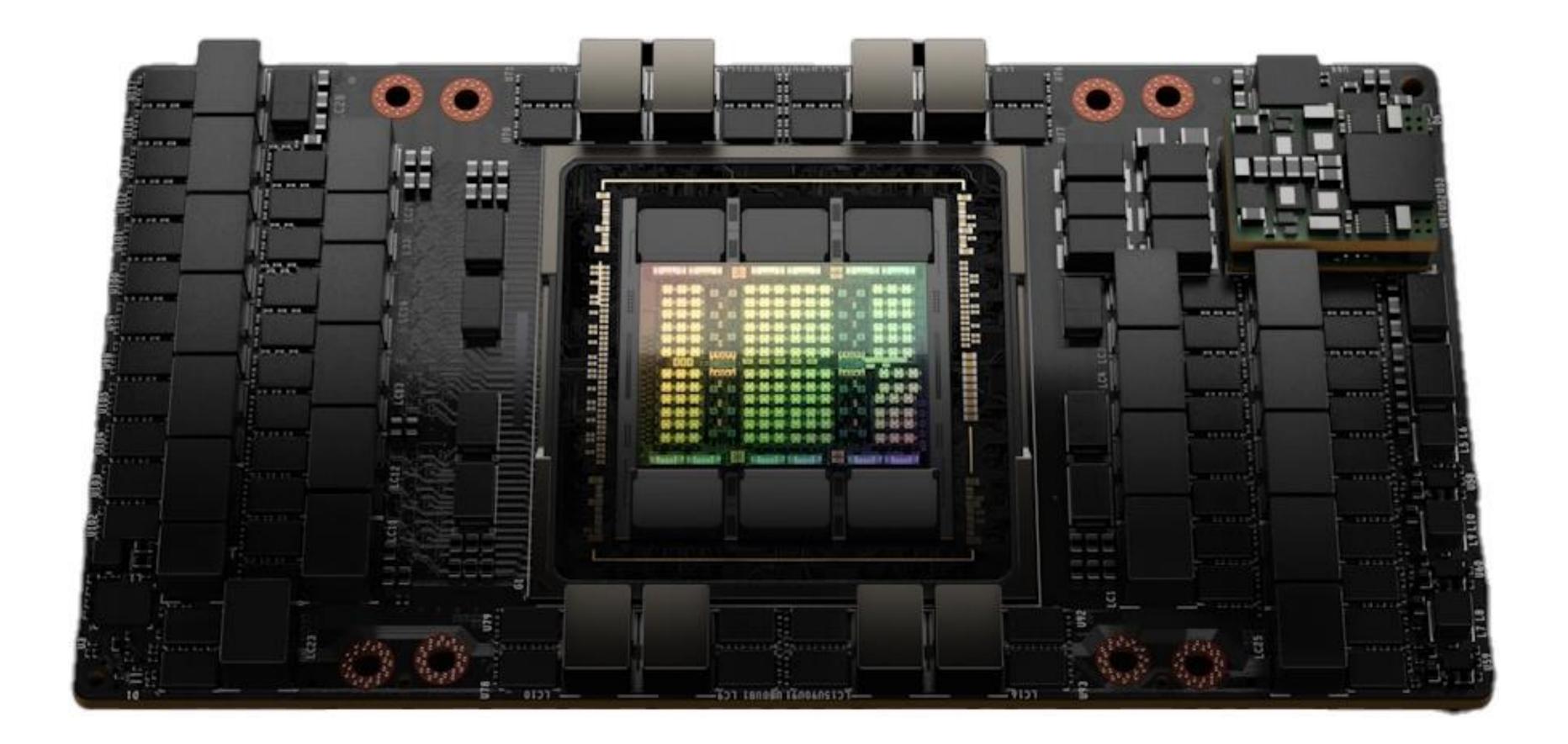


# **Parabricks DeepVariant Training Framework** Easily Train a Custom Model for Optimal Accuracy





# **NVIDIA GPUs for Secondary Analysis** The H100 Dynamic Programming Core



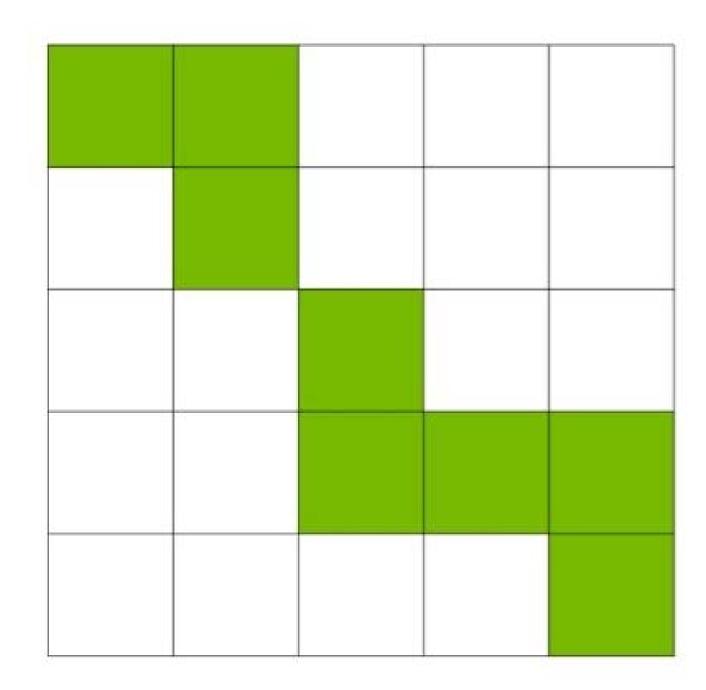
**Boosting Dynamic Programming Performance Using NVIDIA Hopper GPU DPX Instructions** 

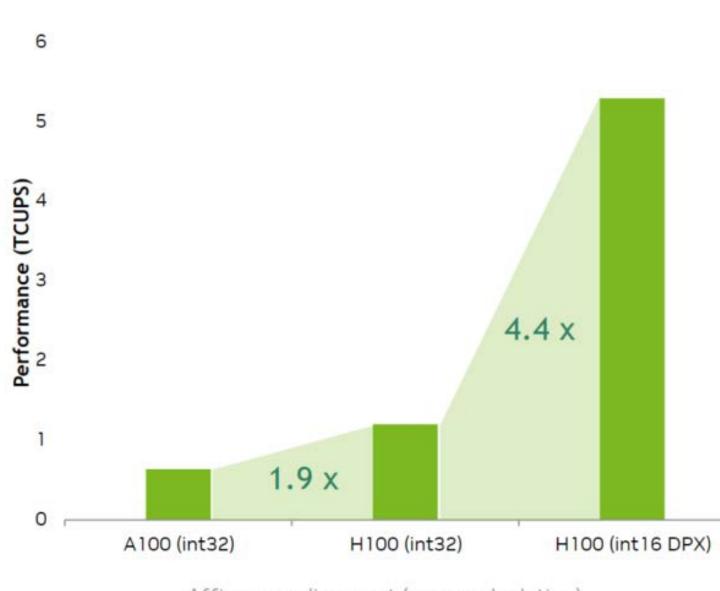
# **Dynamic Programming**

Exponential to polynomial time problem solving

## Supercharged Smith-Waterman

35x acceleration over CPU 7x acceleration over Ampere





Affine gap alignment (score calculation) Weights used from BWA.

Data: HG002 (NA24385) paired-end protocol using Illumina Sequencers.

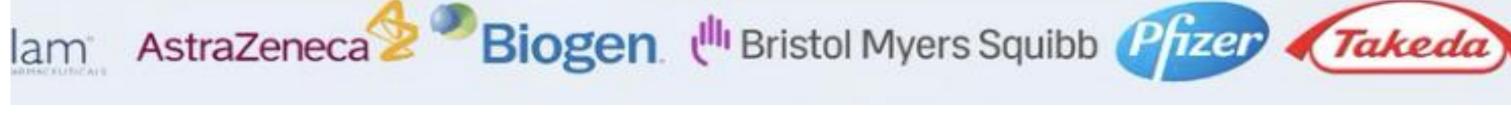


# **User Success Stories**



# Large Population Study UK Biobank's 470,000+ exomes analyzed by Regeneron as of July 2022

# Word's LARGEST Whole Exome Sequencing project COMPLETED! Sequenced data on 470,000**UK Biobank participants** now available







- 500,000 Exomes
- versus 1 hour in CPUs
- alignment.

Regeneron Genetics Center Sequencing close to

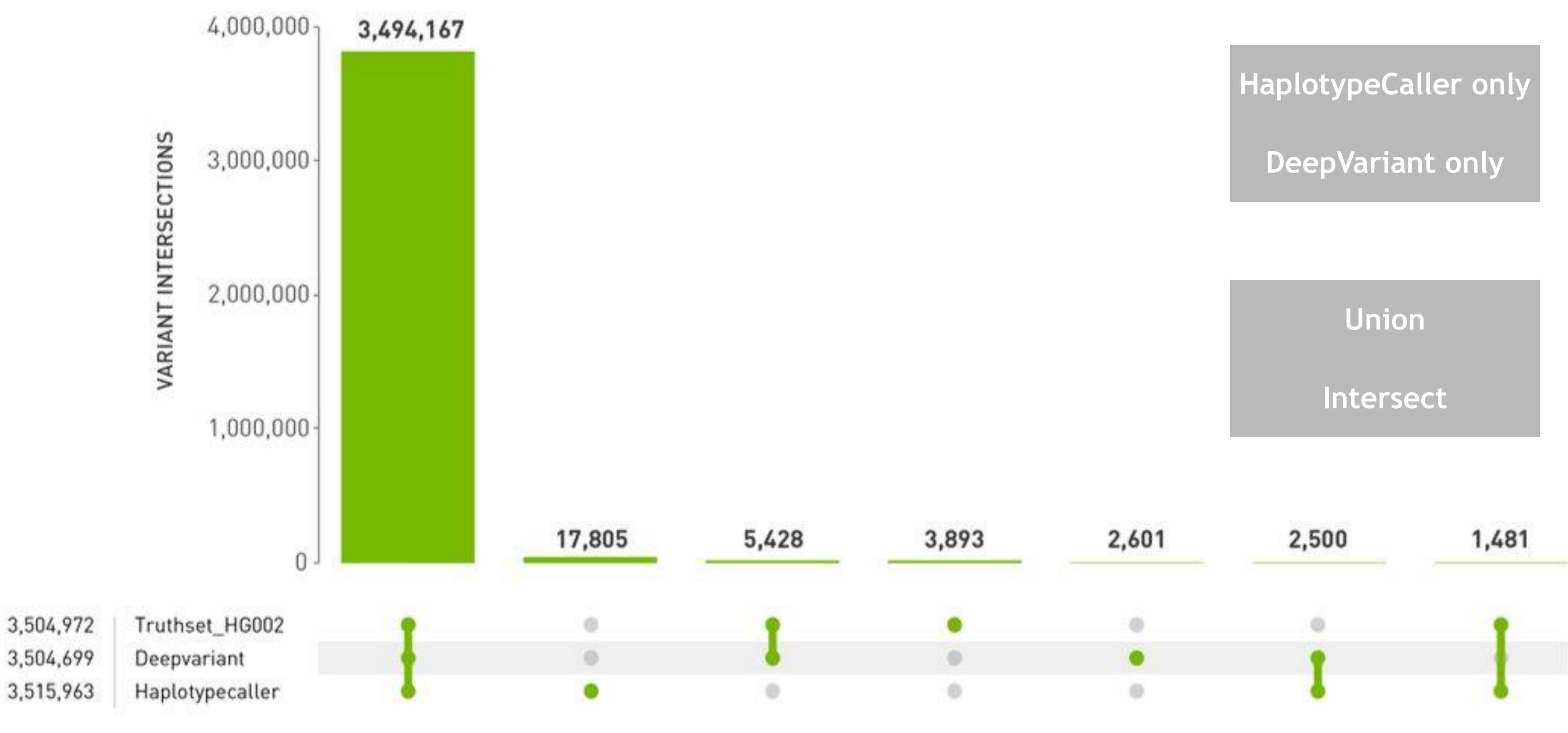
• Exomes were analyzed in 5 minutes with Clara Parabricks

• The cost went down 60% on GPUs

DeepVariant optimized for RGC outputs, especially

 Analysis of DNA given to researchers on UK Biobank which span academia, pharma and other scientists interested in genomic variants for diseases





VARIANTS CALLS PER SUBSET

# **MULTI-TOOL IMPLEMENTATION PROVIDES THE BEST RESULTS**

Comparing germline calling between GATK Haplotype and Google's DeepVariant

HG002 Target genome, analyzing only high confidence regions

|                      | False Positives | False Negative |
|----------------------|-----------------|----------------|
|                      |                 |                |
| HaplotypeCaller only | 20,305          | 9,321          |
| DeepVariant only     | 5,101           | 5,374          |
|                      |                 |                |
| Union                | 22,906          | 3,893          |
| Intersect            | 2,500           | 10,802         |
|                      |                 |                |



# Getting Started with NVIDIA Parabricks



# Modular Tools for Flexible Deployment With NVIDIA AI Enterprise for Production



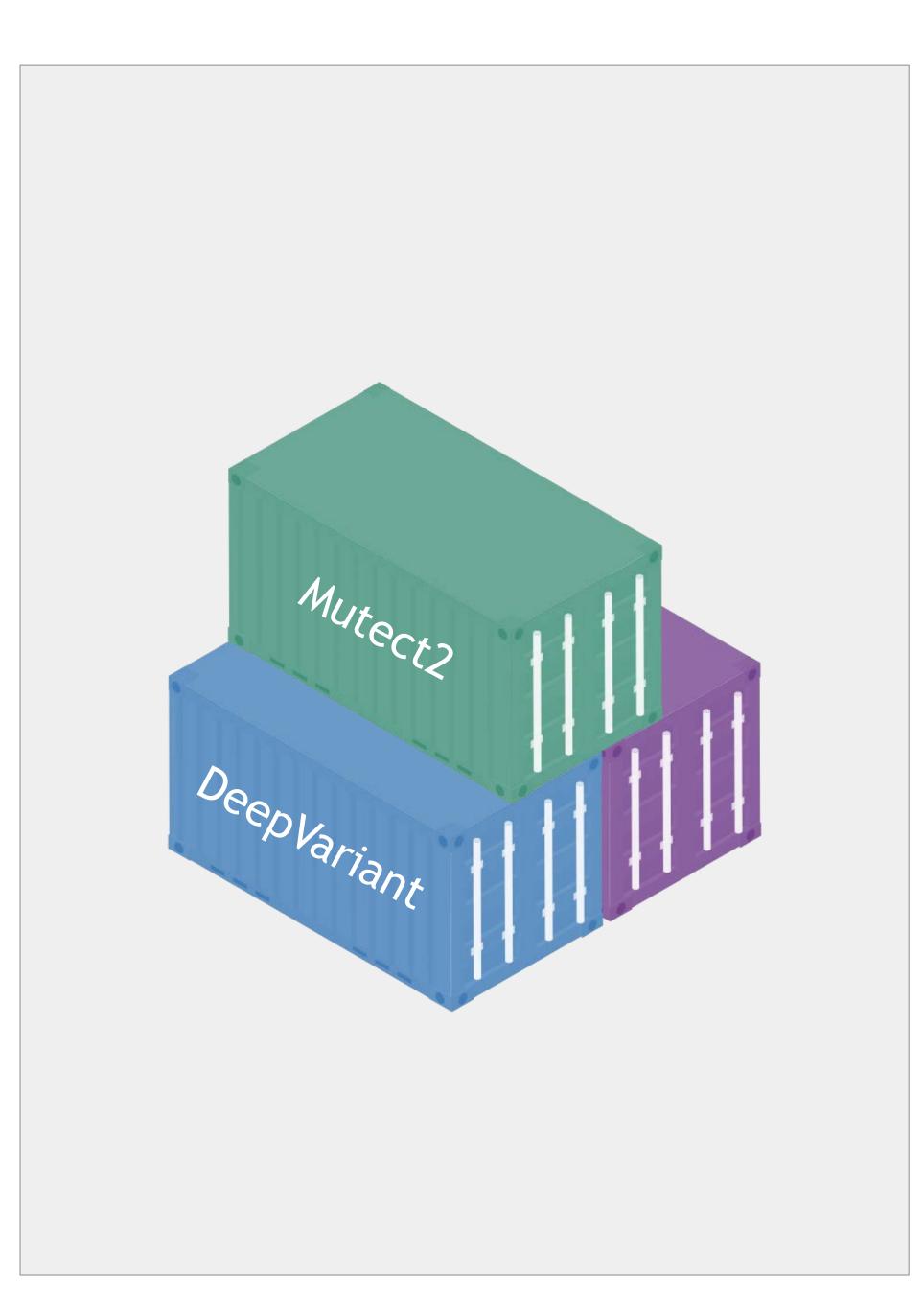
#### **Top of Tree Individual Containers** Available on NGC

All NVIDIA Parabricks Containers are available publicly in the <u>NGC Catalog</u>

 Individual Containers for Each Tool

 Agile Releases as and when required

 Lean Deployment on Sequencers or as part of custom workflows

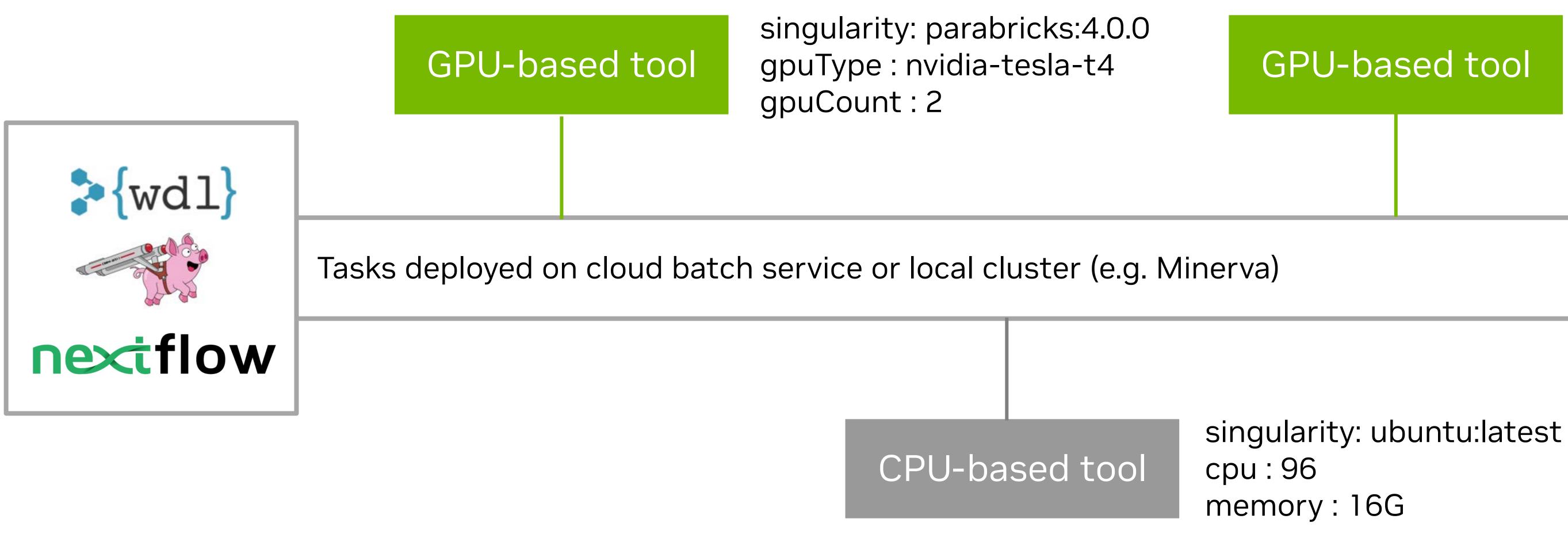


- Includes every Parabricks tool
- Regular Releases timed with NVIDIA AI Enterprise
- Option of Purchasing Enterprise Support thru **NVIDIA AI Enterprise**

### **Stable Unified Container**

Available on NGC Enterprise Support Available





# Workflow Manager Compatible Customize and deploy Parabricks at scale

Parabricks is fully compatible with common workflow managers WDL and NextFlow for deploying at scale

Intertwine GPU and CPU powered tasks with different compute requirements

• Reference workflows and recommended compute configs at: <u>github.com/clara-parabricks-workflows</u>



singularity: parabricks:4.0.0 gpuType : nvidia-tesla-v100 gpuCount:4



#### Hardware Requirements

- Any NVIDIA GPU that supports CUDA architecture 60, 70, 75, or 80 and has at least 16GB of GPU RAM. Parabricks has been tested on the following NVIDIA GPUs:
  - V100
  - **T4**
  - A10, A30, A40, A100, A6000
- System Requirements:
  - A 2 GPU server should have at least 100GB CPU RAM and at least 24 CPU threads.
  - A 4 GPU server should have at least 196GB CPU RAM and at least 32 CPU threads.
  - A 8 GPU server should have at least 392GB CPU RAM and at least 48 CPU threads.

#### Note

Clara Parabricks is not supported on virtual (vGPU) or Multi-Instance (MIG) GPUs.

#### Note

The Clara Parabricks deepvariant and deepvariant\_germline tools ship with support for T4, V100, and A100 GPUs. See the Models for additional GPUs section for more details on downloading model files for A10, A30, A40, A100, and A6000 GPUs for the deepvariant and deepvariant\_germline tools.

#### Software Requirements

The following are software requirements for running Clara Parabricks.

- An NVIDIA driver greater than version 465.32.\*.
- Any Linux Operating System that supports nvidia-docker2 Docker version 20.10 (or higher)

# **Running NVIDIA Parabricks** Requirements

#### <u>Verifying Hardware and Software Requirements</u>

#### **Checking available NVIDIA hardware and driver**

To check your NVIDIA hardware and driver version, use the nvidia-smi command:

| NVID         | [A-SMI             | 515.6         | 5.01 Driv   | ver Ve   |         | 515.65.01                              |                  |                | Transfer I forder of the                |                     |
|--------------|--------------------|---------------|-------------|----------|---------|----------------------------------------|------------------|----------------|-----------------------------------------|---------------------|
|              | Name<br>Temp       | Perf          | Pwr:Usage/C | :ap <br> | us-Id   | Disp.A<br>Memory-Usage                 | Vol<br>  GPU<br> | atile<br>—Util | Uncorr.<br>Compute<br>MIC               | ECC<br>e M.<br>G M. |
| 0<br>N/A     |                    |               | -DGXS On    | 0(       | 0000000 | 0:07:00.0 Off<br>B / 16155MiB          | 1                | .======<br>0%  | Defa                                    | 0                   |
| Proce<br>GPU | esses:<br>GI<br>ID | CI<br>ID      | PID         | Туре     | Proce   | ess name                               |                  |                | GPU Men<br>Usage                        | nory                |
| 0            | N/A                | ======<br>N/A | 3019        | G        | /usr/   | ====================================== | ======<br>q      |                | ======================================= | ====<br>5MiB        |

This shows the following important information:

- The NVIDIA driver version is 515.65.01.
- The supported CUDA driver API is 11.7.
- The GPU has 16 GB of memory.

#### <u>Checking available CPU RAM and threads</u>

To see how much RAM and CPU threads in your machine, you can run the following:

- # To check available memory
- \$ cat /proc/meminfo | grep MemTotal

## Doc for NVIDIA Parabricks 4.3.0

```
# To check available number of threads
$ cat /proc/cpuinfo | grep processor | wc -l
```



#### Run Parabricks on Minerva

```
singularity exec \
    --nv \
    --bind ${DATA_DIR}:${DATA_DIR} \
    ${SINGULARITY_IMAGE} \
    pbrun fq2bam \
    --ref /workdir/${REFERENCE_FILE} \
    --in-fq /workdir/${INPUT_FASTQ_1} /workdir/${INPUT_FASTQ_2} `
    --knownSites /workdir/${KNOWN_SITES_FILE} \
    --out-bam /outputdir/${OUTPUT_BAM} \
    --out-recal-file /outputdir/${OUTPUT_RECAL_FILE}
```

# **Running NVIDIA Parabricks** Drop-in Command Line Replacements

#### **Compatible CPU-based BWA-MEM, GATK4 Commands**

The commands below are the bwa-0.7.15 and GATK4 counterpart of the Parabricks command above. The output from these commands will be identical to the output from the above command. See the Output Comparison page for comparing the results.

```
# Run bwa-mem and pipe the output to create a sorted BAM.
S bwa mem
    -t 32 \
    -K 1000000
  gatk SortSam \
    --java-options -Xmx30g \
    --MAX_RECORDS_IN_RAM 5000000
    -I /dev/stdin \
    -0 cpu.bam \
    --SORT_ORDER coordinate
# Mark duplicates.
$ gatk MarkDuplicates \
    --java-options -Xmx30g
   -I cpu.bam \
    -0 mark_dups_cpu.bam
    -M metrics.txt
# Generate a BQSR report.
$ gatk BaseRecalibrator
    --java-options -Xmx30g \
    --input mark_dups_cpu.bam \
    --output <OUTPUT_DIR>/${OUTPUT_RECAL_FILE} \
    --known-sites <INPUT_DIR>/${KNOWN_SITES_FILE} \
    --reference <INPUT_DIR>/${REFERENCE_FILE}
```

### Doc for NVIDIA Parabricks 4.3.0



```
-R '@RG\tID:sample_rg1\tLB:lib1\tPL:bar\tSM:sample\tPU:sample_rg1' \
<INPUT_DIR>/${REFERENCE_FILE} <INPUT_DIR>/${INPUT_FASTQ_1} <INPUT_DIR>/${INPUT_FASTQ_2} | \
```





| Dace |   | Tute |
|------|---|------|
| DOCS | n | Tuto |

The tutorials walk you through a simple use case for Clara Parabricks, giving a brief introduction of how it worl You will start by downloading some sample data:

The tutorials then walk through the following steps:

The tutorials are meant to be simple and straightforward and to only cover a single, specific use case. You shou be able to copy and paste the commands into a terminal window and get the same results as shown. The How Tos cover more general problem solving using Clara Parabricks.

## **Steps in the Tutorial**

**G** Previous

# **Running NVIDIA Parabricks** Demo: run tutorials on Minerva

orials

## **Tutorials**

• A reference file ( Homo\_sapiens\_assembly38.fasta ) and its index

• A 'known indels' file and its index

Two FASTQ files

Associated index files

 Alignment (FASTA + FASTQ ==> BAM) Variant calling (BAM ==> VCF)

 Getting The Sample Data FQ2BAM Tutorial HaplotypeCaller Tutorial

### Doc for NVIDIA Parabricks 4.3.0

Next



GTC DLI Workshop - Training DeepVariant Models using Parabricks - Recording: <u>https://www.nvidia.com/en-us/on-demand/session/gtc24-dlit61813/</u> or search for the title on NVIDIA On-Demand

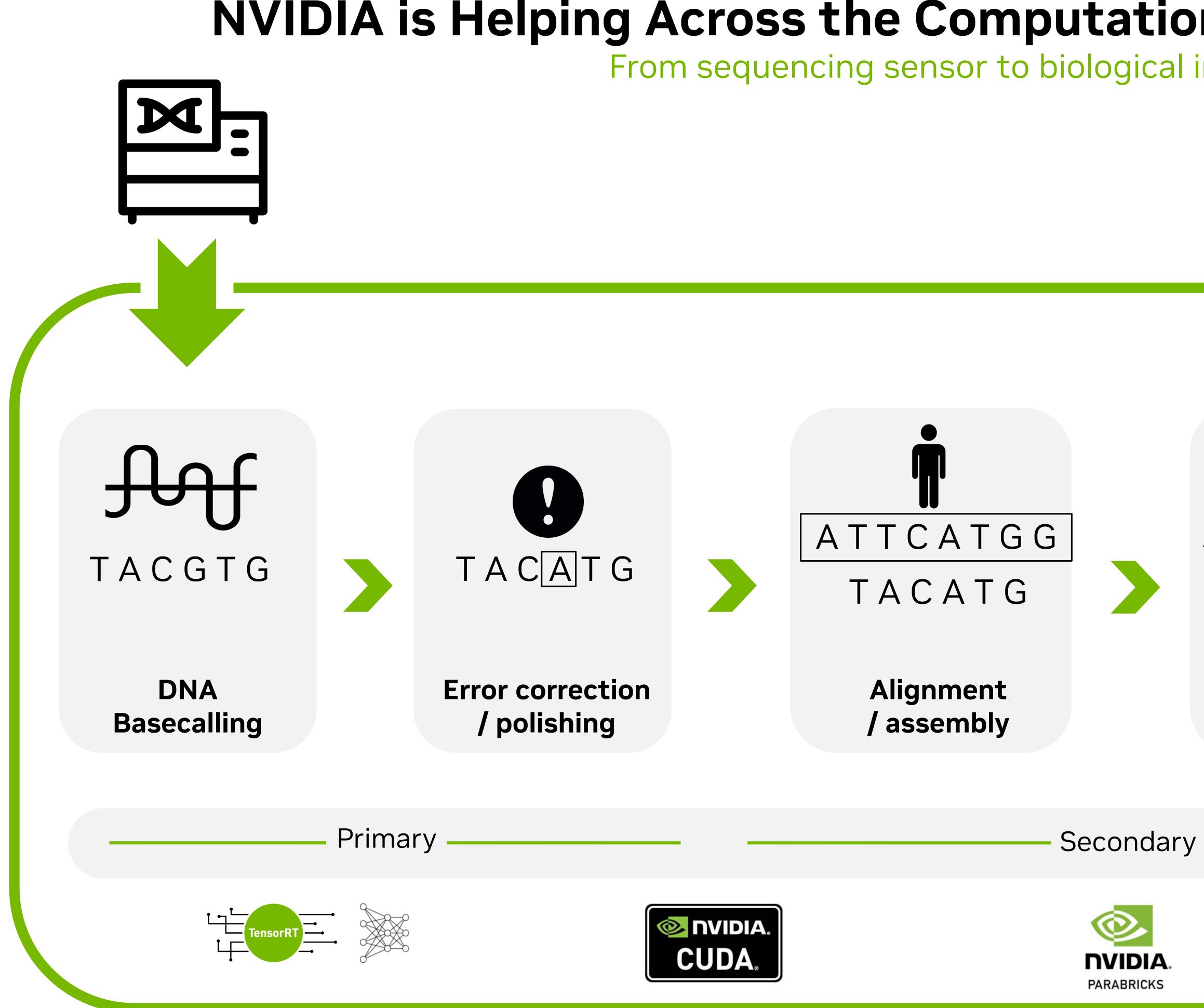
# Resources



# Agenda

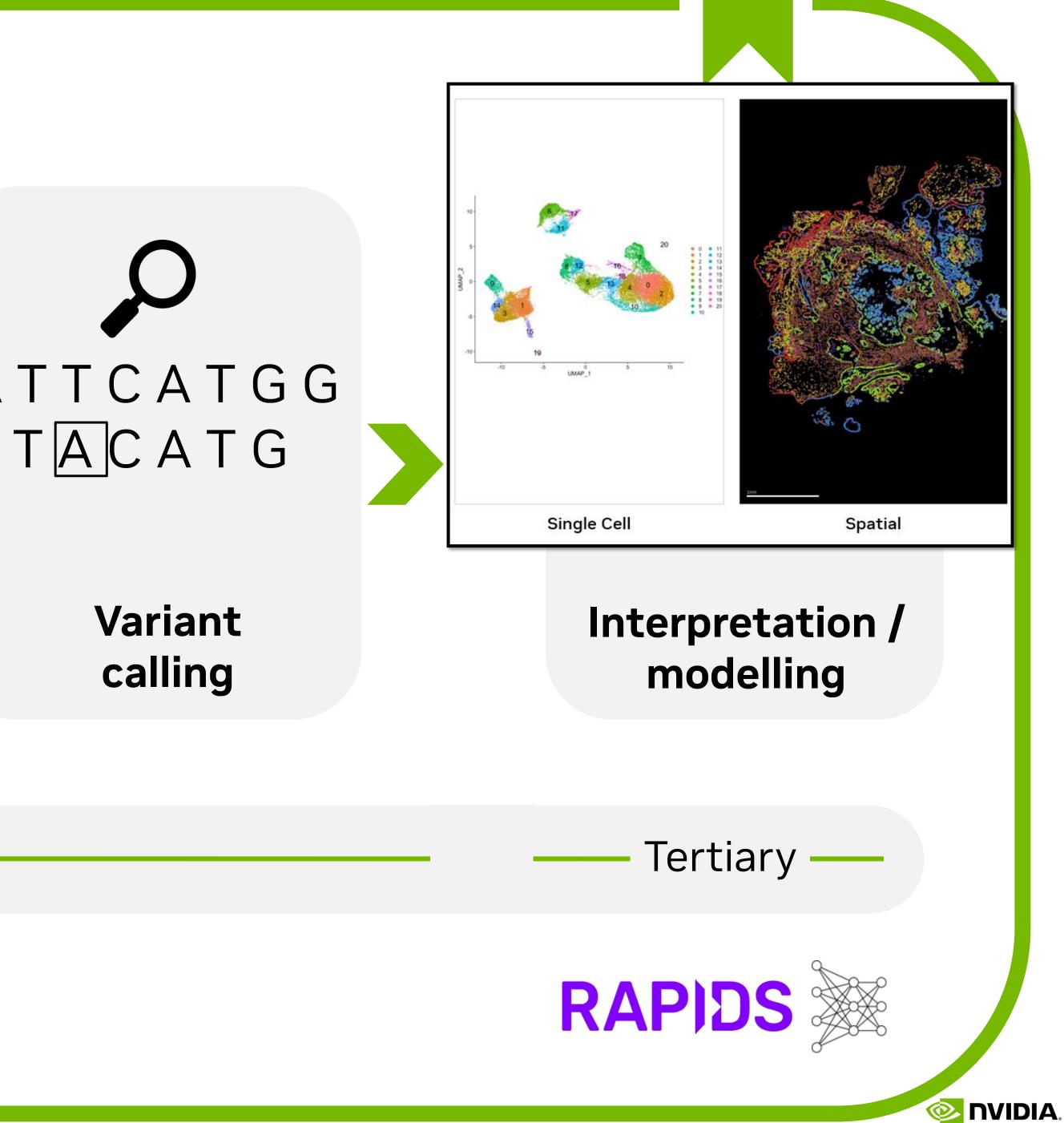
# NVIDIA Parabricks for secondary analysis RAPIDS for tertiary analysis, single-cell RNAseq analysis and spacial genomics





# **NVIDIA** is Helping Across the Computational Genomics Workflow From sequencing sensor to biological insights









### (i) ACCELERATED DATA SCIENCE

The RAPIDS suite of open source software libraries gives you the freedom to execute end-to-end data science and analytics pipelines entirely on GPUs. Learn about RAPIDS >>

### TOP MODEL ACCURACY

Increase machine learning model accuracy by iterating on models faster and deploying them more frequently. Learn about RAPIDS for model optimization >>

# RAPDS

# GPU DATA SCIENCE

### SCALE OUT ON GPUS

Seamlessly scale from GPU workstations to multi-GPU servers and multi-node clusters with Dask. Learn about Dask >>

## **O** REDUCED TRAINING TIME

Drastically improve your productivity with more interactive data science tools like XGBoost.

Learn about XGBoost >> Learn about accelerated ML with cuML >>



### **PYTHON INTEGRATION**

Accelerate your Python data science toolchain with minimal code changes and no new tools to learn.

Learn about our libraries >>

### **P**OPEN SOURCE

RAPIDS is an open source project. Supported by NVIDIA, it also relies on Numba, Apache Arrow, and many more open source projects.

Learn about our projects >>



|                     | CPU          |
|---------------------|--------------|
| Data<br>handling    | pandas       |
| Machine<br>learning | scikit-learn |
| Graph<br>analytics  | NetworkX     |

# DATA SCIENCE TOOLSETS

# **GPU/RAPIDS**

cuDF

cuML

cuGraph

Viz

Geospati

Signals

Cyber

|     | CPU                         | GPU/RAPI  |
|-----|-----------------------------|-----------|
|     | Bokeh/<br>Datashader        | cuXfilter |
| ial | GeoPandas/<br>SciPy.spatial | cuSpatial |
|     | SciPy.signal                | cuSignal  |
|     | cyberpandas                 | CLX       |

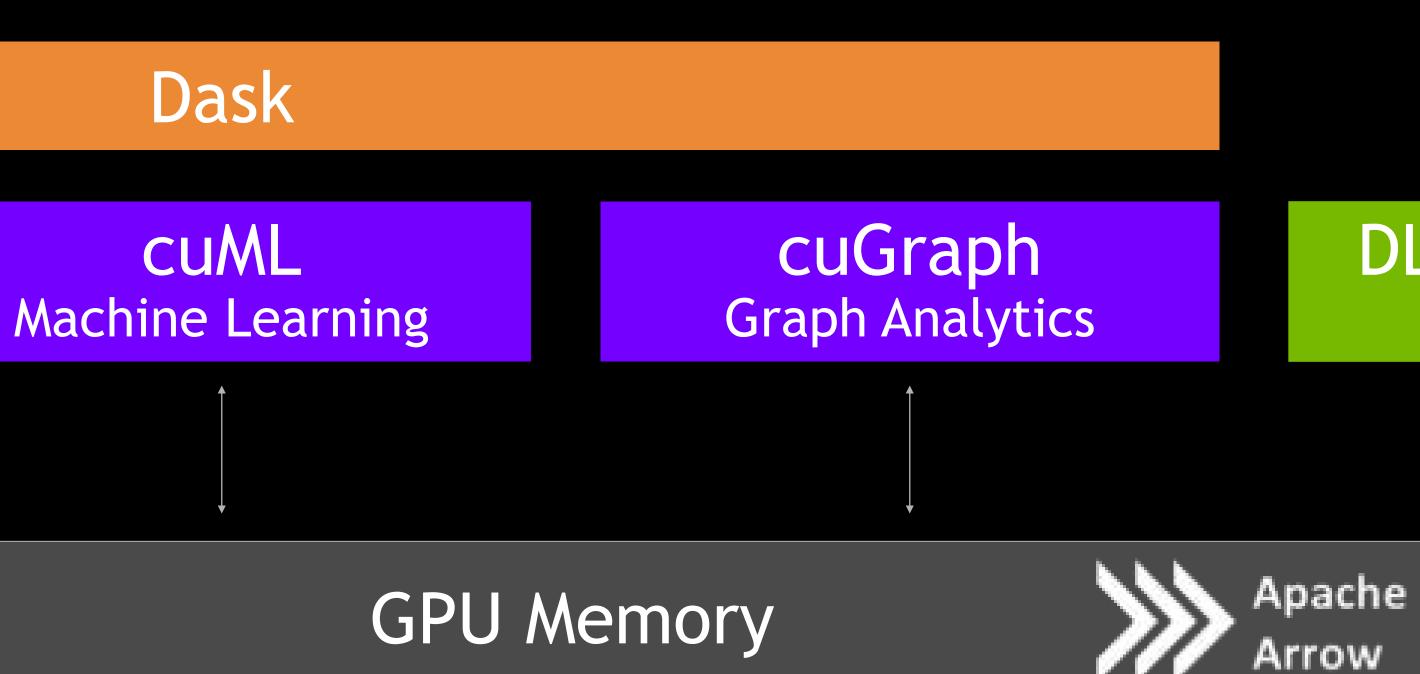




## cuDF Data Prep/Handling

cuSignal cuSpatial **Geospatial Analytics** Signal Processing

# RAPIDS PLATFORM



## Specialized package examples

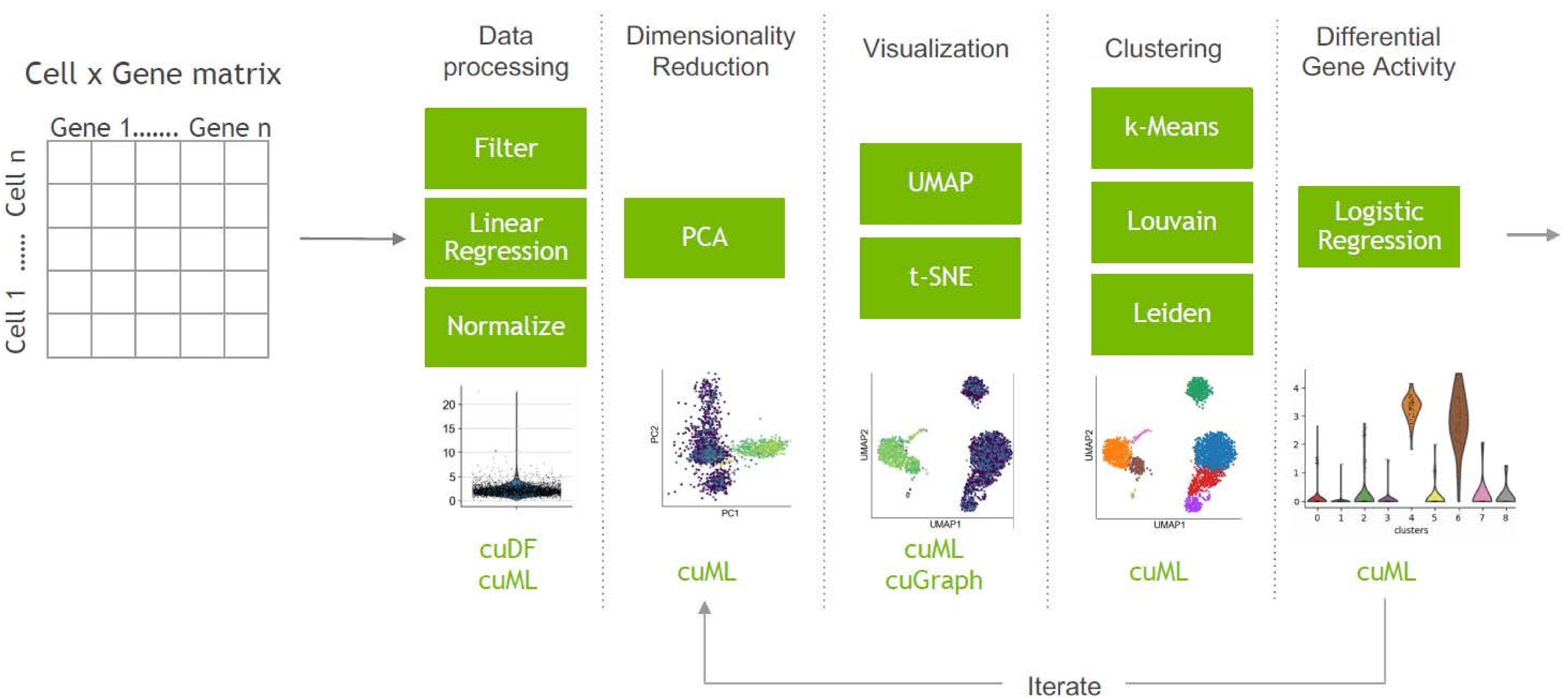
## **DL Frameworks** Deep Learning

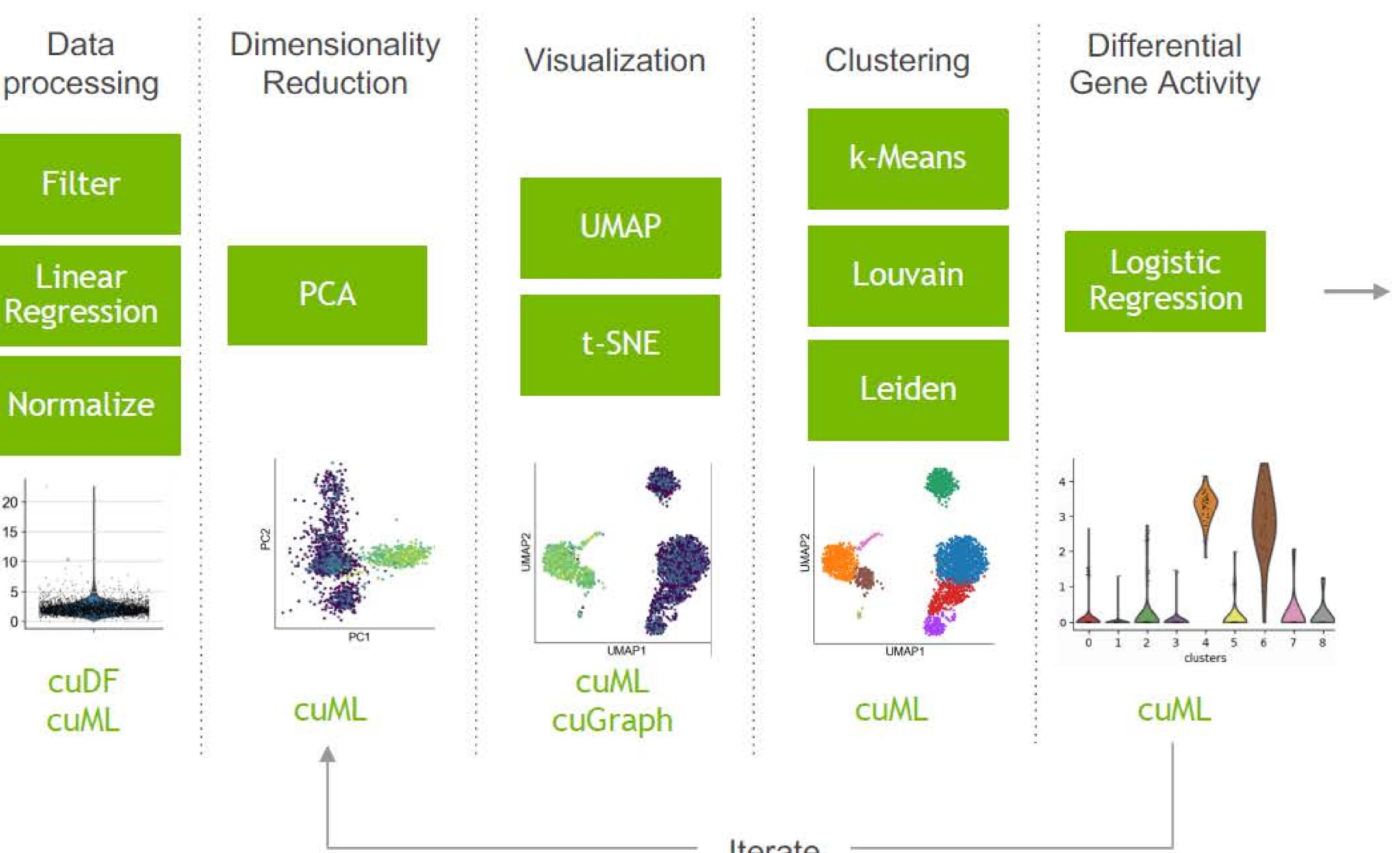
## cuXfilter Visualization

## CLX Cyber Analytics



# SINGLE-CELL RNA-SEQ ANALYSIS USING RAPIDS





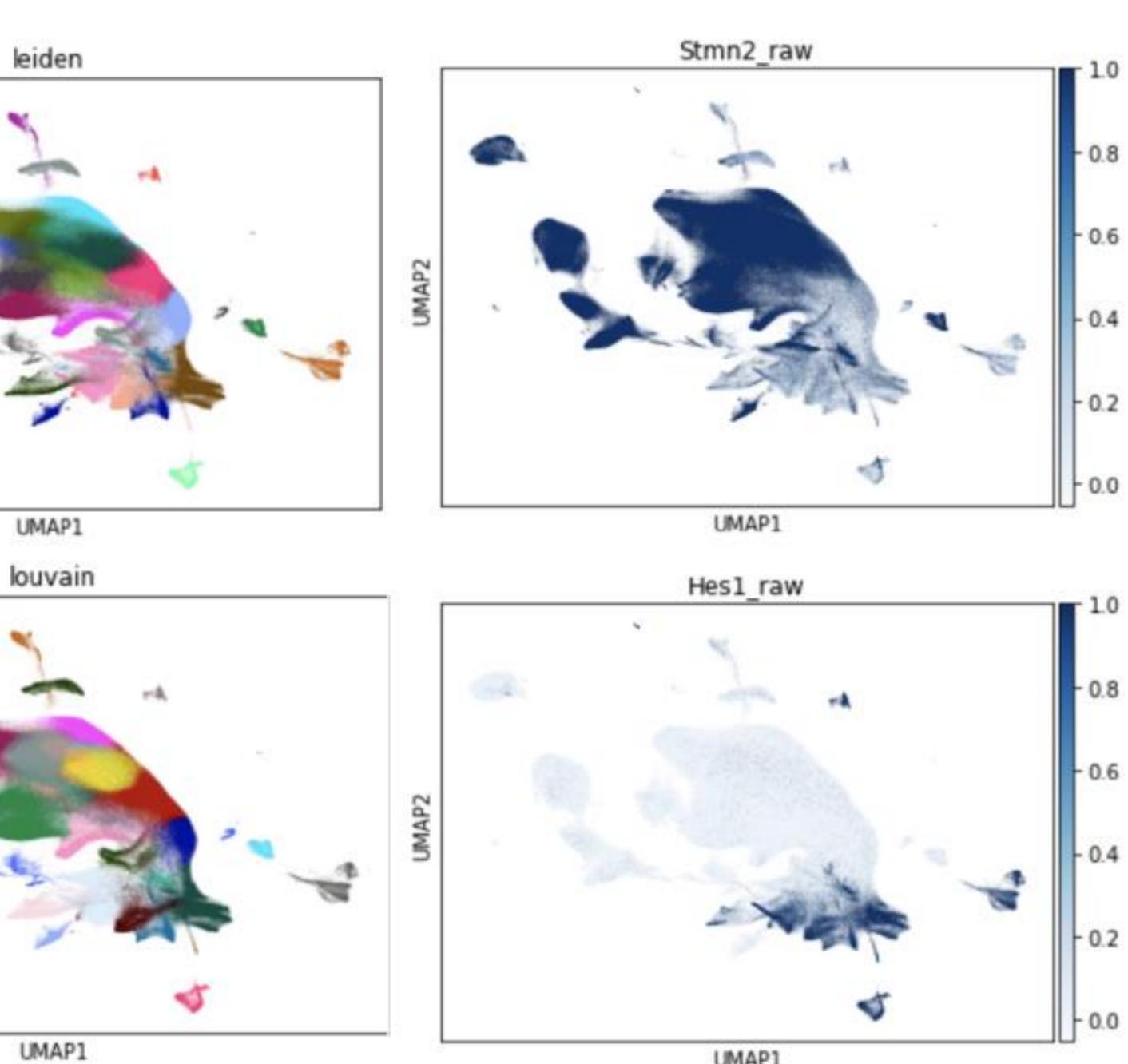


🕺 NVIDIA.

# **GPU ANALYSIS OF 1 MILLION CELLS** From 3.5 hours to 8 minutes

|                    |                                          |                                                     |                     | 1     |
|--------------------|------------------------------------------|-----------------------------------------------------|---------------------|-------|
|                    | CPU Runtime<br>n1-highmem-32<br>32 vCPUs | GPU runtime<br>a2-highgpu-1g<br>Tesla A100 40GB GPU | GPU<br>acceleration |       |
| Preprocessing      | 28m35s                                   | 3m21s                                               | 9x                  | ~     |
| PCA                | 29.2s                                    | 11.4s                                               | 2.6x                | UMAP2 |
| t-SNE              | 1hr23m10s                                | 28s                                                 | 178x                |       |
| KNN                | 3m5s                                     | 46s                                                 | 4x                  |       |
| UMAP               | 21m47s                                   | 13.4s                                               | 98x                 |       |
| k-means clustering | 2m6s                                     | 1.9s                                                | 66x                 |       |
| Louvain clustering | 1 <mark>5m</mark> 5s                     | 1.9s                                                | 476x                | 2     |
| Leiden clustering  | 51m1s                                    | 1.4s                                                | 2186x               | UMAP  |
| End-to-end runtime | 3hr31m48s                                | 8m22s                                               | 25x                 |       |
| End-to-end cost    | \$6.682                                  | \$0.553                                             |                     |       |
|                    |                                          |                                                     |                     |       |

Repository for example jupyter notebooks: <u>https://github.com/NVIDIA-Genomics-Research/rapids-single-cell-examples</u>



UMAP1

- A new library drawing inspiration from the rapids-single-cell-examples library and the ScanPy library
- Introduces GPU-optimized versions of lacksquarethe ScanPy (single cell) and SquidPy (spatial) functions
- The library's primary objective is to blend the computational strength of GPUs with the user-friendly nature of the scverse ecosystem.

# **RAPIDS-SingleCell** Part of the Scverse ecosystem

#### Function

Whole notebook(excluding PR functions)

Preprocessing

HVG (Seurat v3)

Regress out

scale

PCA

Neighbors

UMAP

TSNE

Louvain

Leiden

Logistic regression

Diffusion map

HVG (PR)

Normalize (PR)

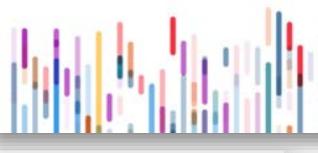
Table 2. Server node and consumer system benchmark for a dataset of 500,000 cells

https://developer.nvidia.com/blog/gpu-accelerated-single-cell-rna-analysis-with-rapids-singlecell/

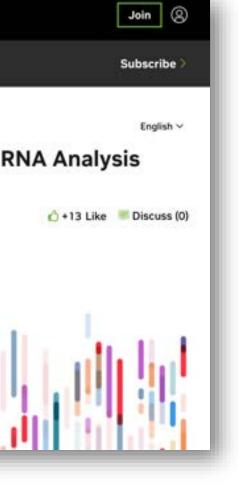
Technical Blog Q

Data Science

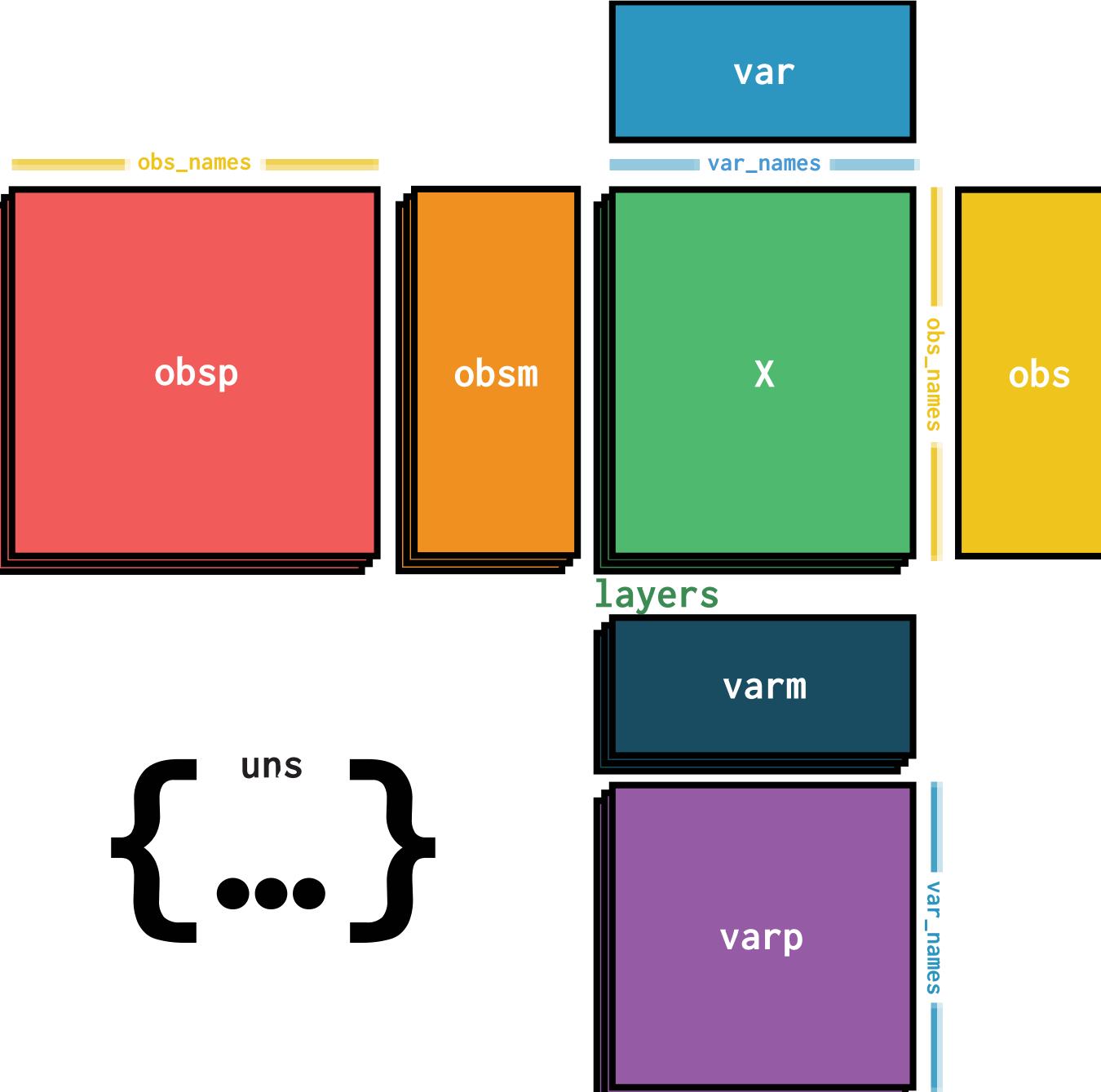
**GPU-Accelerated Single-Cell RNA Analysis** with RAPIDS-singlecell By Severin Dicks and Corey Nole



| CPU              | GPU (A100) | GPU (3090)            | Speedup |
|------------------|------------|-----------------------|---------|
| 2,460 s (41 min) | 110 s      | 290 s                 | 22x     |
| 305 s            | 28 s       | 169 s                 | 10x     |
| 48 s             | 1.5 s      | 13 s                  | 32x     |
| 104 s            | 5.1 s      | 16 s                  | 20x     |
| 8.4 s            | 1.3 s      | 5 s                   | 6.4x    |
| 86 s             | 3.7 s      | 35 s                  | 23x     |
| 74 s             | 17.1 s     | 1 <mark>8.</mark> 3 s | 4.3x    |
| 281 s (4.6 min)  | 6.7 s      | 7.6 s                 | 60x     |
| 786 s (13 min)   | 10 s       | 12.9 s                | 105x    |
| 283 s (4.5 min)  | 4.5 s      | 5.7 s                 | 62x     |
| 282 s (4.5 min)  | 0.6 s      | 0.9 s                 | 470x    |
| 452 s (7.5 min)  | 33 s       | 63 s                  | 13x     |
| 30 s             | 0.75 s     | 1.3 s                 | 40x     |
| 104 s            | 2.1 s      | 15.6 s                | 50x     |
| 22 s             | 0.3 s      | ls                    | 73x     |







https://anndata.readthedocs.io/en/latest/#

# **RAPIDS-SingleCell** The AnnData framework now supports CuPy arrays

**AnnData** stores a data matrix **X** together with annotations of observations obs (obsm, obsp), variables var (varm, **varp**), and unstructured annotations **uns**.

An AnnData object adata can be sliced like a DataFrame, for instance adata\_subset = adata[:, list\_of\_variable\_names] . AnnData 's basic structure is similar to R's ExpressionSet [Huber15]. If setting an .h5ad formatted HDF5 backing file .filename, data remains on the disk but is automatically loaded into memory if needed.

## Rapids-singlecell utilizes the scverse AnnData data framework, which supports dense and sparse CuPy arrays



### API scanpy-GPU

V

rapids\_singlecell.pp.calculate\_q c\_metrics

rapids\_singlecell.pp.filter\_cells

rapids\_singlecell.pp.filter\_gene S

rapids\_singlecell.pp.normalize\_ total

rapids\_singlecell.pp.log1p

rapids\_singlecell.pp.highly\_vari able\_genes

rapids\_singlecell.pp.regress\_ou

rapids\_singlecell.pp.scale

rapids\_singlecell.pp.pca

rapids\_singlecell.pp.normalize\_ pearson\_residuals

rapids\_singlecell.pp.flag\_gene\_ family

rapids\_singlecell.pp.filter\_highl y\_variable

# **RAPIDS-SingleCell** API based on ScanPy and SquidPy

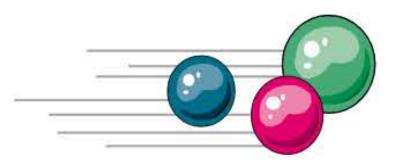
| Basic Preprocessing                                      |                                         |
|----------------------------------------------------------|-----------------------------------------|
| <pre>pp.calculate_qc_metrics (adata[, expr_type,])</pre> | Calculates basic                        |
| <pre>pp.filter_cells (adata, qc_var[, min_count,])</pre> | Filter cell outliers<br>genes expressed |
| <pre>pp.filter_genes (adata[, qc_var, min_count,])</pre> | Filter genes base                       |
| <pre>pp.normalize_total (adata[, target_sum,])</pre>     | Normalizes rows<br>target_sum           |
| <b>pp.log1p</b> (adata[, layer, copy])                   | Calculated the na sparse matrix.        |
| <pre>pp.highly_variable_genes (adata[, layer,])</pre>    | Annotate highly                         |
| <b>pp.regress_out</b> (adata, keys[, layer,])            | Use linear regres                       |
| <pre>pp.scale (adata[, max_value, layer, inplace])</pre> | Scales matrix to                        |
| pp.pca (adata[, layer, n_comps, zero_center,])           | Performs PCA us function.               |
| <pre>pp.normalize_pearson_residuals (adata[,])</pre>     | Applies analytic                        |
|                                                          |                                         |

https://rapids-singlecell.readthedocs.io/en/latest/index.html



| Q 7 CO d                                                               |
|------------------------------------------------------------------------|
|                                                                        |
| lates basic qc Parameters.                                             |
| cell outliers based on counts and numbers of expressed.                |
| genes based on number of cells or counts.                              |
| alizes rows in matrix so they sum to                                   |
| lated the natural logarithm of one plus the e matrix.                  |
| ate highly variable genes.                                             |
| near regression to adjust for the effects of need noise and variation. |
| s matrix to unit variance and clips values                             |
| rms PCA using the cuml decomposition<br>on.                            |
| es analytic Pearson residual normalization,                            |





**RAPIDS-SINGLECELL** 

Installation

Usage Principles

API

Release notes

References

Notebooks

Demo Workflow & Decoupler

HVG:seurat\_v3 & harmony workflow

Pearson Residues Example

**1 Million Brain Cells** 

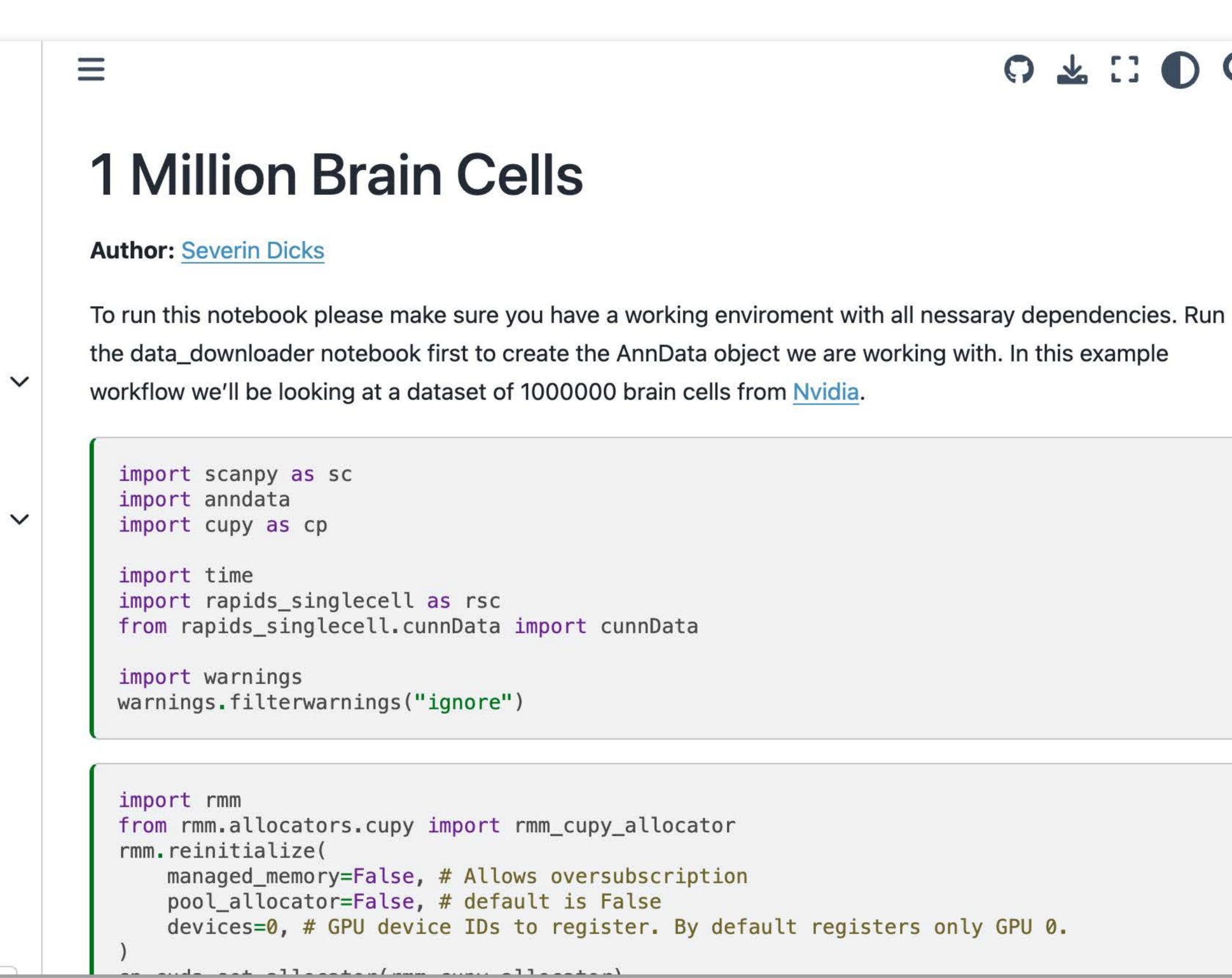
Spatial Autocorrelation

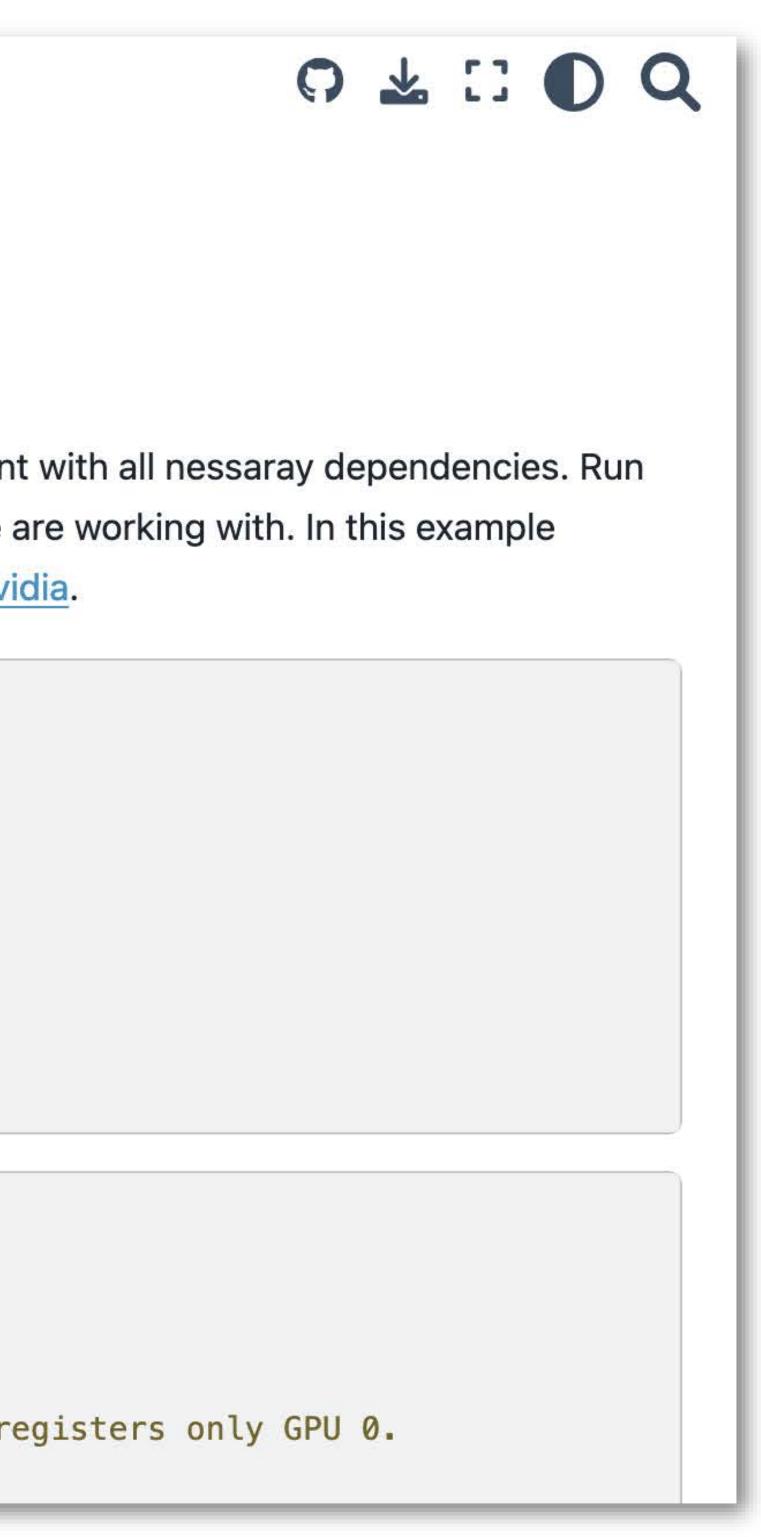
Ligrec Benchmark

Acknowledgements

https://rapids-singlecell.readthedocs.io/en/latest/notebooks/demo\_gpu-seuratv3-brain-1M.html

# **RAPIDS-SingleCell** Get Started Now with Example Notebooks







# or search for the title on NVIDIA On-Demand

## Everything, All at Once: Processing Spatial Transcriptomics Data using Accelerated Computing

Jonny Hancox, Senior Solution Architect, NVIDIA

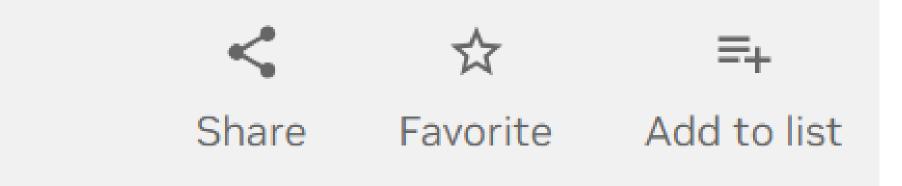
Rate Now

The potential clinical benefits of combining the power of mRNA expression with the rich context of tissue morphology are considerable. Equally impressive is the amount of data preparation and processing needed to perform this analysis. In the absence of well-established pipelines dedicated to this analysis, scientists often have to make do with their own curated set of tools and techniques. Learn how RAPIDS and compatible tools can be used to address the key steps in the process, reducing the time to turn biological mysteries into actionable insights.

# **Spatial Genomics**

GTC DLI Workshop - Everything, All at Once: Processing Spatial Transcriptomics Data using Accelerated Computing - Recording: <a href="https://www.nvidia.com/en-us/on-demand/session/gtc24-dlit61337/">https://www.nvidia.com/en-us/on-demand/session/gtc24-dlit61337/</a>

You'll learn to use GPU tools in python environment - RAPIDS, CuPy, Numba





# 1. Medical imaging specifi

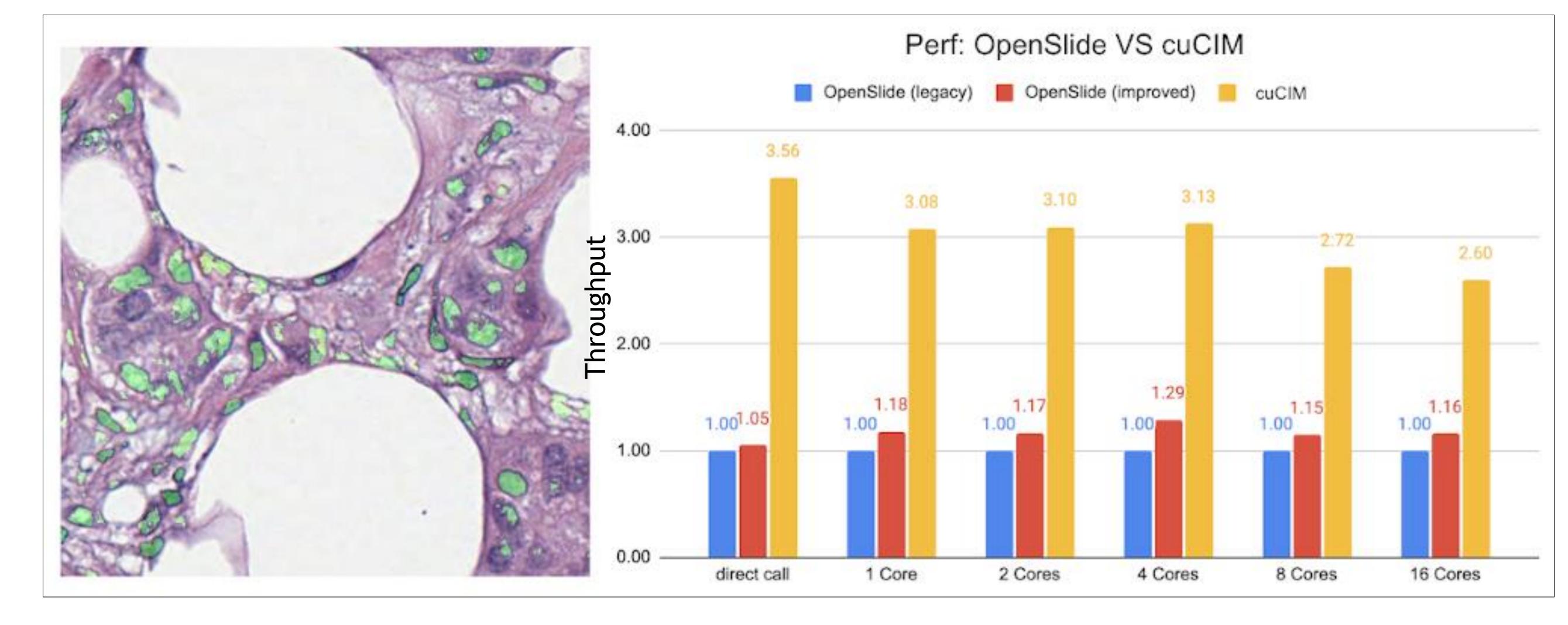
# 2. Superior performance

# 3. Friendly community

# MONAL Core

# **Optimize data loading**

## cuCIM - Whole Slide Imaging (digital pathology)



## cuCIM - a library within <u>RAPIDS</u>

# 2. Superior performance

# MONAL Core **Optimize GPU utilization**

## cuCIM -> common transforms in digital pathology

| 13 | f |
|----|---|
| 14 |   |
| 15 |   |
| 16 |   |
| 17 |   |
| 18 |   |
| 19 |   |
| 20 |   |
| 21 |   |
| 22 |   |
| 23 |   |
| 24 |   |
| 25 |   |
| 26 |   |
| 27 |   |
| 28 |   |
| 29 |   |
| 30 |   |
| 31 |   |
| 32 | ) |
|    |   |



## Do transforms on GPU

```
from monai.transforms import (
   Activations,
   AsDiscrete,
   CastToType,
   CastToTyped,
   Compose,
    CuCIM,
   GridSplitd,
   Lambdad,
   Rand<mark>CuCIM</mark>,
    RandFlipd,
   RandRotate90d,
   RandZoomd,
   ScaleIntensityRanged,
   ToCupy,
   ToNumpyd,
   TorchVisiond,
   ToTensor,
   ToTensord,
```

MONAI Core pathology tutorials

# Agenda

# NVIDIA Parabricks for secondary analysis RAPIDS for tertiary analysis, single-cell RNAseq analysis and spacial genomics



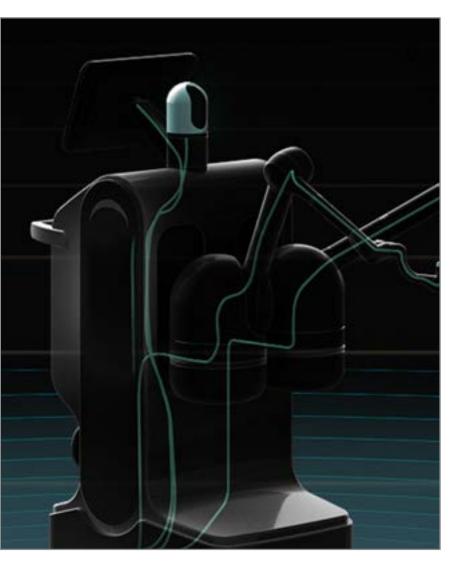
# **NVIDIA Clara** Accelerated Computing Platform for Healthcare & Life Sciences

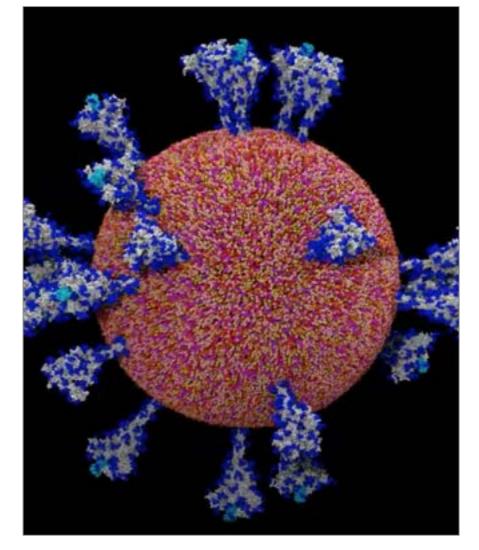




PARABRICKS Genomics

## **NVIDIA CLARA**





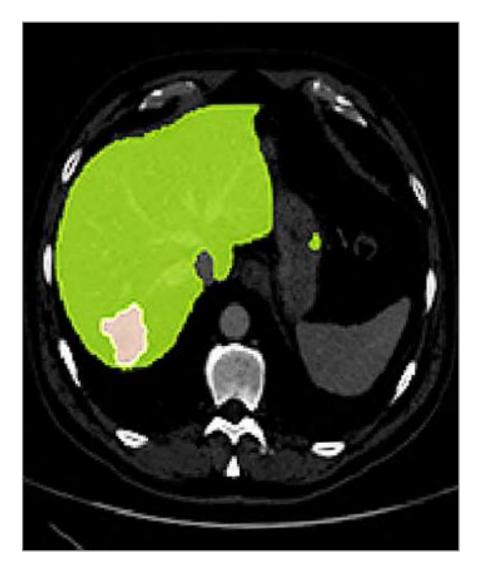
ISAAC Robotics

HOLOSCAN Instruments

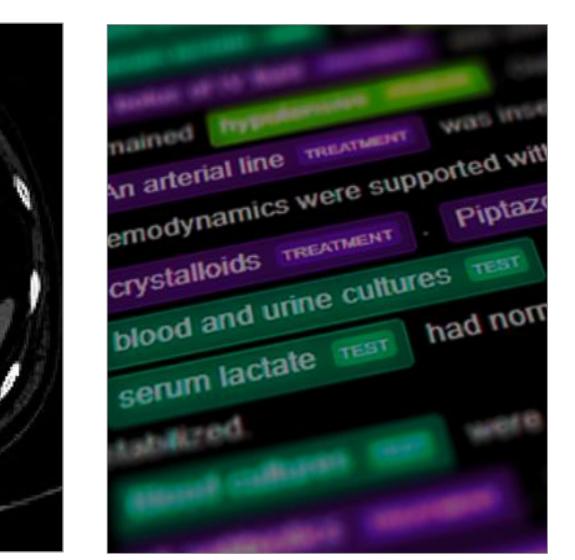
BIONEMO Biomolecules



Federated Learning

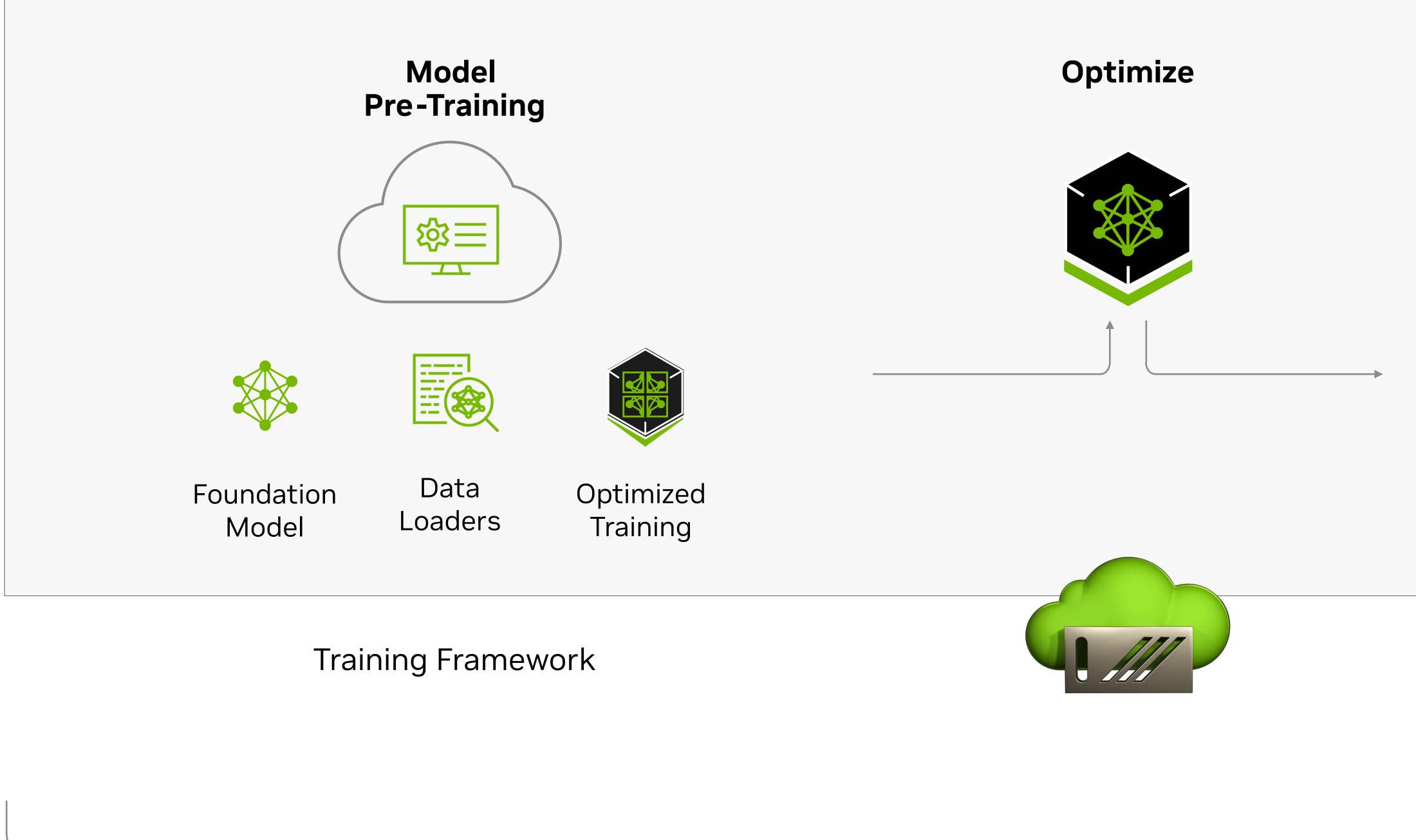


MONAI Imaging



#### NEMO Natural Language

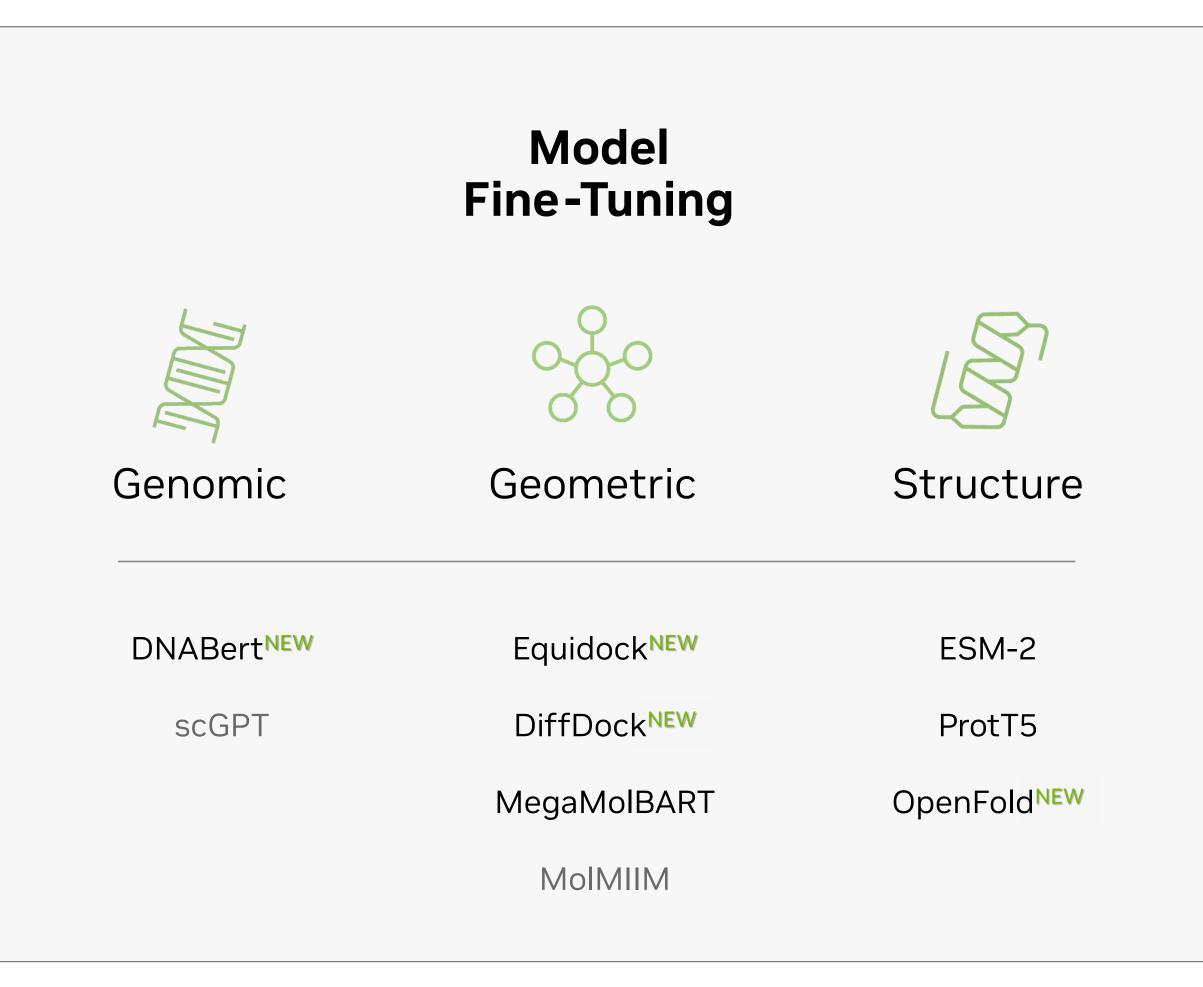




# **NVIDIA BioNeMo Framework** Enables Data Scientists and Researchers Train on DNA, Protein, Chemistry Data

Microsoft Azure

aws Soogle Cloud ORACLE



#### Pre-Trained Models



## search for the title on <u>NVIDIA On-Demand</u>

# **Genomics Recommended Sessions to Attend**

## FEATURED TALKS

Kimberly Powell Special Address: Generative AI is Accelerating Healthcare into One of the Largest Technology Industries [S62604] Kimberly Powell | General Manager and VP, Healthcare and Life Sciences Tuesday, Mar 19 | 8:00 AM PDT

The Role of Generative AI in Modern Medicine [S62777] Kimberly Powell | General Manager and VP, Healthcare and Life Sciences Eric Topol | Professor and Executive Vice President Catherine D. Wood | Chief Executive Officer/Chief Investment Officer Peter Lee | Corporate Vice President of Research and Incubations Tuesday, Mar 19 | 11:00 AM - 11:50 AM PDT

How Artificial Intelligence is Powering the Future of Biomedicine [S62283] Priscilla Chan | Co-Founder and co-CEO, Chan Zuckerberg Initiative Mona Flores | Global Head of Medical AI, NVIDIA Tuesday, Mar 19 | 10:00 AM - 10:25 AM PDT

## WORKSHOPS & TRAININGS

**Training DeepVariant Models using Parabricks [DLIT61813]** Thursday, Mar 21 | 2:00 PM - 3:40 PM PDT

#### First-Ever Whole Transcriptome Imaging of Tissues using CosMx-SMI: Highest-**Density Dataset Ever Collected [S61995]**

Joseph Beechem | Senior Vice President of Research and Development, Nanostring Wednesday, Mar 208:00 AM - 8:25 AM PDT

#### **Nucleotide Transformer: Advancing Genomic Analysis with Large Language Models [S62438]**

Karim Beguir | CEO and Co-founder, InstaDeep Tuesday, Mar 19 | 9:00 AM - 9:25 AM PDT

#### **Computer Vision for Rare Disease Genomic Medicine [S62535]**

Wolfgang Pernice | Assistant Professor of Neurological Sciences, Columbia University In The City Of New York Thursday, Mar 21 | 9:00 AM - 9:25 AM PDT

#### Introduction to GPU-Accelerated Genomics with Parabricks [S62322]

Harry Clifford | Genomics Product Lead, NVIDIA Wednesday, Mar 20 | 4:30 PM - 4:55 PM PDT



# Thanks for your attention



