

5 Ways to Accelerate with GPUs

Brad Palmer, Senior Solutions Architect

First, some GPU basics

ACCELERATED COMPUTING

GPU Accelerator

Optimized for Parallel Tasks

HOW GPU ACCELERATION WORKS

GPU ARCHITECTURE

Two Main Components

Global memory

Analogous to RAM in a CPU server

Accessible by both GPU and CPU

H100 has 80 GB

Streaming Multiprocessors (SM)

Perform the actual computation

Each SM has its own: Control units, registers, execution pipelines, caches

H100 has 114 SMs

GPU ARCHITECTURE

Streaming Multiprocessor (SM)

Many CUDA Cores per SM

Architecture dependent

H100 SM has 128 cores

Special-function units

cos/sin/tan, etc.

Shared mem + L1 cache

Thousands of 32-bit registers

Instruction Cache Scheduler Scheduler Dispatch Dispatch **Register File** Core Load/Store Units x 16 **Special Func Units x 4** Interconnect Network 64K Configurable **Cache/Shared Mem Uniform Cache**

H100 PCIe has a total of 14,592 cores

PROCESSING FLOW

A100 memory bandwidth is 25x PCIe gen4

PROCESSING FLOW

prinect

DRAM

- 1. Copy input data from CPU memory to GPU memory
- 2. Load GPU program and execute, caching data on chip for performance

PROCESSING FLOW

- A parallel computing platform and application programming interface (API) model created by NVIDIA
- Allows software developers and software engineers to use a CUDA-enabled GPUs for general purpose processing
- Backwards compatible
- The name CUDA was originally an acronym for Compute Unified Device Architecture

The Five Ways to Accelerate with GPUs

5 WAYS TO ACCELERATE WITH GPUS

5 WAYS TO ACCELERATE WITH GPUS

THOUSANDS OF GPU-ACCELERATED APPLICATIONS

Transforming Every Industry

ARTIFICIAL INTELLIGENCE • PyTorch • MXNet • TensorFlow	CLIMATE & WEATHER • Cosmos • Gales • WRF	COMPUTATIONAL FINANCE • O-Quant Options Pricing • MUREX • MISYS	DATA SCIENCE & ANALYTICS • Anaconda • H20 • OmniSci	FEDERAL DEFENSE & OTHER • ArcGIS Pro • EVNI • SocetGXP • Cyllance • FaceControl	 LIFE SCIENCES Amber LAMMPS GROMACS NAMD Relion VASP
MANUFACTURING, CAD, & CAE • Ansys Fluent • Abaqus SIMULIA • AutoCAD • CST Studio Suite	MEDIA & ENTERTAINMENT • DaVinci Resolve • Premiere Pro CC • Redshift Renderer	MEDICAL IMAGING • aidoc • PowerGrid • RadiAnt •••	OIL & GAS • Echelon • RTM • SPECFEM3D •••	RETAIL • Everseen • Deep North • Third Eye Labs • AWM • Malong • Clarifai • Antuit	SUPERCOMPUTING & HER • Chroma • GTC • MILC • QUDA • XGC

For a comprehensive list of all apps, please refer to GPU application catalog: https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-product-literature/gpu-applications-catalog.pdf

Sample GPU Accelerated Applications

See https://www.nvidia.com/en-us/gpu-accelerated-applications/

- Amber
- GROMACS
- LAMMPS
- NAMD
- Relion
- Chroma
- GTC
- MILC
- SPECFEM3D
- FUN3D

Standard Benchmark speedup on single A100 vs dual CPU

https://developer.nvidia.com/hpc-application-performance

- Amber 13x 39x
- GROMACS 6x 9x
- LAMMPS 5x 18x
- NAMD 6x 8x
- Relion 4x 5x
- Chroma 32x
- GTC 14x
- MILC 32x
- SPECFEM3D 29x
- FUN3D 13x

Single particle electron microscopy

SINGLE PARTICLE ANALYSIS

GPU-accelerated apps (above)

- AMIRA
 - BioEM
- cryoSPARC
- cyYOLO
 - YIOLO
- Dynamo

- EMAN2RELION
- emClarityTomviz
- GCTF Topaz
- IMOD
 VMD
- MotionCor2Warp

NVIDIA Parabricks for Alignment & Variant Calling

Speed, Scale, Accuracy

Universal Analysis

Industry-standard tools for all major sequencers, ported to GPU

Up to 100x Acceleration

Up to 100x faster for WGS compared to CPU-only

Up to 50% Lower Cost

Up to 50% lower compute cost for WGS compared to CPU-only

Higher Accuracy with Al

The power of deep learning for customized high accuracy analysis

Up to 80x Acceleration

Industry-standard results, faster

NVIDIA BioNeMo

Cloud Service for Customizing and Running Generative AI in Drug Discovery

NVIDIA DGX

Customizable SOTA Generative AI

Innovate faster and more competitively using proprietary data sets to train and fine-tune drug discovery workflows

Easy and Instant Access to Optimized AI

Eliminate the need for building IT infrastructure, managing open-source software, optimize for throughput

Seamless and Scalable AI Service

Ultimate flexibility in experimenting and building enterprise grade generative AI workflows with GUI & API Endpoints on scalable managed infrastructure

5 WAYS TO ACCELERATE WITH GPUS

LIBRARIES: EASY, HIGH-QUALITY ACCELERATION

EASE OF USE Using libraries enables GPU acceleration without in-depth knowledge of GPU programming

"DROP-IN" Many GPU-accelerated libraries follow standard APIs, thus enabling acceleration with minimal code changes

QUALITY Libraries offer high-quality implementations of functions encountered in a broad range of applications

PERFORMANCE NVIDIA libraries are tuned by experts

NVIDIA HPC SDK

Available at developer.nvidia.com/hpc-sdk, on NGC, via Spack, and in the Cloud

Develop for the NVIDIA Platform: GPU, CPU and Interconnect Libraries | Accelerated C++ and Fortran | Directives | CUDA 7-8 Releases Per Year | Freely Available

3 STEPS TO CUDA-ACCELERATED APPLICATION

Step 1: Substitute library calls with equivalent CUDA library calls

saxpy (...) - cublasSaxpy (...)

Step 2: Manage data locality

- with CUDA: cudaMalloc(), cudaMemcpy(), etc.

- with CUBLAS: cublasAlloc(), cublasSetVector(), etc.

Step 3: Rebuild and link the CUDA-accelerated library

gcc myobj.o -l cublas

SAXPY is "Single-Precision A times X Plus Y"

GPU Accelerated Libraries (some examples)

https://developer.nvidia.com/how-to-cuda-libraries

- **CUBLAS** an implementation of BLAS (Basic Linear Algebra Subprograms).
- **CUFFT** a Fast Fourier Transform library with support for the FFTW API.
- **CURAND** provides facilities that focus on the simple and efficient generation of high-quality pseudorandom and quasi-random numbers.
- **CUSPARSE** contains a set of basic linear algebra subroutines used for handling sparse matrices.
- cuSOLVER GPU-accelerated dense and sparse direct solvers (LAPACK-like features)
- **CUDA Math Library** GPU-accelerated standard mathematical function library (Available to any CUDA C or CUDA C++ application simply by adding "#include math.h" in your source code)
- Thrust GPU-accelerated library of C++ parallel algorithms and data structures
- nvJPEG High performance GPU-accelerated library for JPEG decoding
- ArrayFire open source library for matrix, signal, and image processing
- MAGMA linear algebra routines for heterogeneous architectures
- **CHOLMOD** functions for sparse direct solvers

https://github.com/nvidia/cudalibrarysamples

CuPy

https://cupy.dev/

- Open-source array library for GPUaccelerated computing
- Interface is highly compatible with NumPy and SciPy
- Can be used as a drop-in replacement in most cases
- Just replace numpy and scipy with cupy and cupyx.scipy
- Speeds up some operations more than 100X

CuPy speedup over NumPy (Quoted from RAPIDS AI)

RAPIDS

https://rapids.ai/

RAPIDS: a suite of open source software libraries and APIs gives you the ability to execute end-to-end data science and analytics pipelines entirely on GPUs. Licensed under Apache 2.0

Popular Libraries:

- **cuDF** a pandas-like dataframe manipulation library
- cuML GPU versions of algorithms in scikit-learn
- cuSignal signal processing library based on SciPy Signal
- cuGraph Network-X-like accelerated graph analytics library
- cuSpatial GPU-accelerated GIS and spatiotemporal algorithms

ALGORITHMS GPU-accelerated Scikit-Learn

https://github.com/rapidsai/cuml#supported-algorithms

MONAI

A comprehensive Medical AI framework built by experts, accelerated by NVIDIA.

NVIDIA Holoscan

The sensor processing platform for building real-time AI

Developer Productivity

Optimized for High-performance

Sensor Partner Ecosystem

C++, Python

Secure

Secure by design

Remote provisioning and management

Medical Grade

Ready for certification (IEC 60601, 62304).

Production Ready

Customizable white-label platform

Long term support

NVIDIA FLARE

Open-Source SDK for Federated Learning

- Apache License 2.0 to catalyze FL research & development
- Enables Distributed, Multi-Party Collaborative Learning
- Production Scalability with high availability and multi-task execution
- Adapt existing ML/DL workflows to a Federated paradigm
- Privacy Preserving Algorithms
 - Homomorphic Encryption & Differential Privacy
- Secure Provisioning, Orchestration & Monitoring
- Programmable APIs for Extensibility

Available on Github: https://github.com/nvidia/nvFlare

Building Generative AI Applications for the Enterprise

Build, customize, and deploy generative AI models with NVIDIA NeMo.

SUPERMIC

Enterprise

5 WAYS TO ACCELERATE WITH GPUS

Flexibility Accessibility

OpenACC Directives

https://www.openacc.org/

OpenACC is a user-driven directive-based performance-portable parallel programming model. It is designed for scientists and engineers interested in porting their codes to a wide-variety of heterogeneous HPC hardware platforms and architectures with significantly less programming effort than required with a low-level model.

C **#pragma acc** *directive* [*clause* [,] *clause*] ...] Often followed by a structured code block

Fortran **!\$acc directive [clause [,] clause]** ...] Often paired with a matching end directive surrounding a structured code block **!\$acc end directive**

- Simple Compiler hints
- Compiler Parallelizes code
- Works on many-core GPUs & multicore CPUs

https://www.gpuhackathons.org/

A VERY SIMPLE EXERCISE: SAXPY

SAXPY in C

SAXPY in Fortran

```
void saxpy(int n,
    float a,
    float *x,
    float *restrict y)
```

```
#pragma acc kernels
  for (int i = 0; i < n; ++i)
    y[i] = a*x[i] + y[i];
}</pre>
```

// Perform SAXPY on 1M elements
saxpy(1<<20, 2.0, x, y);</pre>

. . .

subroutine saxpy(n, a, x, y)
 real :: x(:), y(:), a
 integer :: n, i
\$!acc kernels
 do i=1,n
 y(i) = a*x(i)+y(i)
 enddo
\$!acc end kernels
end subroutine saxpy

\$ Perform SAXPY on 1M elements
call saxpy(2**20, 2.0, x_d, y_d)

• • •

TOP HPC APPS ADOPTING OPENACC

OpenACC - Performance Portability And Ease of Programming

ANSYS Fluent R18.0 Radiation Solver

CPU: (Haswell EP) Intel(R) Xeon(R) CPU E5-2695 v3 @2.30GHz, 2 sockets, 28 cores GPU: Tesla K80 12+12 GB, Driver 346.46

5 WAYS TO ACCELERATE WITH GPUS

CUDA Programming (ultimate control)

https://developer.nvidia.com/blog/even-easier-introduction-cuda/

CUDA gives you fine-level control over

- thread execution
- use of GPU memory hierarchy

Tune your code for optimal performance

Scale your parallel execution to multiple GPUs and multiple hosts using NCCL and MPI

CUDA API – C, C++, Fortran, Julia, Python

CUDA aware MPI (OpenMPI, MVAPICH, Spectrum MPI, and more)

CUDA C

```
void saxpy serial(int n,
                   float a,
                   float *x,
                   float *y)
{
  for (int i = 0; i < n; ++i)
    y[i] = a^*x[i] + y[i];
}
// Perform SAXPY on 1M elements
saxpy serial(4096*256, 2.0, x, y);
```

__global_

```
void saxpy_parallel(int n,
    float a,
    float *x,
    float *y)
{
```

```
// Perform SAXPY on 1M elements
saxpy_parallel<<<4096,256>>>(n,2.0,x,y);
```

http://developer.nvidia.com/cuda-toolkit

RAPID PARALLEL C++ DEVELOPMENT

- Resembles C++ STL
- High-level interface
 - Enhances developer productivity
 - Enables performance portability between GPUs and multicore CPUs
- Flexible
 - CUDA, OpenMP, and TBB backends
 - Extensible and customizable
 - Integrates with existing software
 - Open source


```
// generate 32M random numbers on host
thrust::host vector<int> h vec(32 << 20);</pre>
thrust::generate(h vec.begin(),
                 h vec.end(),
                  rand);
// transfer data to device (GPU)
thrust::device vector<int> d vec = h vec;
// sort data on device
thrust::sort(d vec.begin(), d vec.end());
// transfer data back to host
thrust::copy(d vec.begin(),
             d vec.end(),
             h vec.begin());
```

COMPUTE DEVELOPER TOOLS

Nsight Systems

System-wide application algorithm

tuning

· GPU Speed Of Light										
· SOL SM	17.84 Duration (Mancesonnie)						24	19,066.0		
* SOL TEX	17.54 Elepted Cycles						1.74	12.044.0		
* SOL 12	15.00 Df Frequency (Re)						5,242,38	17,061.3		
% SOL 7B	SGC 25 87.54 Minnety Traguancy (Ka)							2,499,503,545.		
				Recommendation						
Bottleneck Single GPU bottle	meck detection.								_	logly
				GPU Utilization						
N SH Bury										
% Newcry Bury				_			_		•	Ourrent
0.0	0.0 20.0	30.0	40.0	50.0	60.0	70.0	80.0	90.D	200.0	
				% Ublication						
Compute Workload Analysis										
Esecuted Ipc Elepsed				0.71 % dH D	arg					17.8
Essented Type Active	Ipe Active 0.72 % Issue Hists Bury					11.3				
Issued Ips Active				0.72						
Plemory Workload Analysis										
Hencey Throughput (hytes/s)			70,335,960	0,898.20 * Hen I	luey					87.3
% L1 Rit Rate	Rit Rate 0.00 % Max Bandwidth					07.5				
% 12 Hit Sate				33.54 % Ham	liges bury					17.7
Scheduler Statistics										
Active Marge Per Scheduler				19.20 Instru	ctions Per Activ	ve Issue Slot				1.0
Eligible Marps For Schedule		D.25 S No Eligible					62.7			
Issued Harps Per Scheduler				0.10 6 004	or More Eligible	•				19.2
 Warp State Statistics 										
Cycles Fer Issued Instruction	Len			72.86 Aug. A	tive Threads De	er Narp				82.0
Cycles Fer Issue Slot				76.02 Jung. H	on Fredicated Co	ff Threads Der W	arp			20.4
Corles for Executed Instru	thing.			72.87						

Nsight Compute

CUDA Kernel Profiling and Debugging

Nsight Graphics

Graphics Shader Profiling and Debugging

IDE Plugins

Nsight Eclipse Edition/Visual Studio (Editor, Debugger)

	Q Search 0,0,0) (0,0,0) (1,0,0)	CUDA Information SM 11 Warp 0 Lane 0	
	Q Search (0,0,0) (0,0,0) (1,0,0)	CUDA Information SM 11 Warp 0 Lane 0	(R) 256 threads of 256 are run (e) vectorAdd.cu:36 (Dx9a653)
• • • •	(0,0,0) (0,0,0) (1,0,0)	SM 11 Warp 0 Lane 0	256 threads of 256 are runt evectorAdd.cu:36 (0x9a653)
	(0,0,0) (0,0,0) (1,0,0)	SM 11 Warp 0 Lane 0	256 threads of 256 are run extorAdd.cu:36 (0x9a653)
	(0,0,0) (1,0,0)	Warp 0 Lane 0	vectorAdd.cu:36 (0x9a653)
	(1,0,0)		vectorAdd.cu:36 (0x9a653)
		Warp 0 Lane 1	e vectorAdd.cu:36 (0x9a6531
	Coutline	Registers II	CAR DETENTE
. Italia	Name	T(0.0.0)B(0.0.0	T(1.0.0)B(0.0.0)
<u>n.</u>	20 10	4	
0.	20 PA	3143024	3149824
	22.97	4	4
	ALL RS.	0	1
	22 R9	0	1
	## R10	1050608	-271911904
	22 R11	0	2 .
		R. 23	
nts",valu	e="500"}],f	ile="/src/vecto	rAd\ -
rc/vector	Add.cu*,lin	2="36"}	
	nts", valu	all RS all RG all RG all RG all RB all RH all RG all RG al	Image 4 Image 3149224 Image 318924 Image 0 Image 0 <td< td=""></td<>

cuda-gdb

CUDA Kernel Debugging

Compute Sanitizer

Memory, Race Checking

5 WAYS TO ACCELERATE WITH GPUS

STANDARD LANGUAGE PROGRAMMING

<u>https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar/</u> <u>https://developer.nvidia.com/blog/accelerating-fortran-do-concurrent-with-gpus-and-the-nvidia-hpc-sdk/</u> <u>https://developer.nvidia.com/cunumeric</u>

HPC PROGRAMMING IN ISO C++

ISO is the place for portable concurrency and parallelism

Preview support coming to NVC++

C++17	C++20	C++23 and Beyond
 Parallel Algorithms In NVC+++ Parallel and vector concurrency Forward Progress Guarantees Extend the C++ execution model for accelerators Memory Model Clarifications Extend the C++ memory model for accelerators 	<pre>Scalable Synchronization Library Express thread synchronization that is portable and scalable across CPUs and accelerators In libcu++: std::atomic<t> std::barrier std::barrier std::counting_semaphore std::atomic<t>::wait/notify_* std::atomic_ref<t></t></t></t></pre>	 Executors / Senders-Recievers Simplify launching and managing parallel work across CPUs and accelerators std::mdspan/mdarray HPC-oriented multi-dimensional array abstractions. Range-Based Parallel Algorithms Improved multi-dimensional loops Linear Algebra C++ standard algorithms API to linear algebra Maps to vendor optimized BLAS libraries Extended Floating Point Types First-class support for formats new and old: std::float16_t/float64_t

C++17 PARALLEL ALGORITHMS

Lulesh Hydrodynamics Mini-app

- ~9000 lines of C++
- Parallel versions in MPI, OpenMP, OpenACC, CUDA, RAJA, Kokkos, ISO C++...
- Designed to stress compiler vectorization, parallel overheads, on-node parallelism

codesign.llnl.gov/lulesh

```
static inline
```

```
void CalcHydroConstraintForElems(Domain &domain, Index_t length,
   Index t *regElemlist, Real t dvovmax, Real t& dthydro)
{
#if OPENMP
  const Index t threads = omp get max threads();
 Index_t hydro_elem_per_thread[threads];
 Real t dthydro per thread[threads];
#else
 Index t threads = 1;
 Index t hydro elem per thread[1];
 Real t dthydro per thread[1];
#endif
#pragma omp parallel firstprivate(length, dvovmax)
 {
   Real t dthydro tmp = dthydro ;
   Index_t hydro_elem = -1 ;
#if OPENMP
    Index_t thread_num = omp_get_thread_num();
#else
    Index t thread num = 0;
#endif
#pragma omp for
    for (Index t i = 0; i < \text{length}; ++i) {
     Index t indx = regElemlist[i] ;
     if (domain.vdov(indx) != Real t(0.)) {
       Real t dtdvov = dvovmax / (FABS(domain.vdov(indx))+Real t(1.e-20)) ;
       if ( dthydro tmp > dtdvov ) {
         dthvdro tmp = dtdvov :
         hydro elem = indx ;
   dthydro per thread[thread num] = dthydro tmp ;
   hydro elem per thread[thread num] = hydro elem ;
  for (Index t i = 1; i < threads; ++i) {</pre>
   if(dthydro per_thread[i] < dthydro_per_thread[0]) {</pre>
     dthydro per thread[0] = dthydro per thread[i];
      hydro_elem_per_thread[0] = hydro_elem_per_thread[i];
   }
 if (hydro elem per thread[0] != -1) {
   dthydro = dthydro per thread[0] ;
 }
 return ;
                             C++ with OpenMP
```

STANDARD C++

- Composable, compact and elegant >
- Easy to read and maintain >
- ISO Standard
- Portable nvc++, g++, icpc, MSVC, ... >

C++ STANDARD PARALLELISM

Lulesh Performance

Same ISO C++ Code

ACCELERATED STANDARD LANGUAGES

Parallel performance for wherever your code runs

5 WAYS TO ACCELERATE WITH GPUS

