
5 Ways to Accelerate with GPUs
Brad Palmer, Senior Solutions Architect

First, some GPU basics

3

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

GPU Accelerator
Optimized for
Parallel Tasks

ACCELERATED COMPUTING

4
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

4
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

HOW GPU ACCELERATION WORKS

Application Code

+

GPU CPU
5% of Code

Compute-Intensive Functions

Rest of Sequential
CPU Code

5

GPU ARCHITECTURE

Global memory

Analogous to RAM in a CPU server

Accessible by both GPU and CPU

H100 has 80 GB

Streaming Multiprocessors (SM)

Perform the actual computation

Each SM has its own: Control units, registers, execution pipelines, caches

H100 has 114 SMs

Two Main Components

6

GPU ARCHITECTURE

Many CUDA Cores per SM

Architecture dependent

H100 SM has 128 cores

Special-function units

cos/sin/tan, etc.

Shared mem + L1 cache

Thousands of 32-bit registers

Streaming Multiprocessor (SM) Register File

Scheduler

Dispatch

Scheduler

Dispatch

Load/Store Units x 16

Special Func Units x 4

Interconnect Network

64K Configurable

Cache/Shared Mem

Uniform Cache

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Instruction Cache

H100 PCIe has a total of 14,592 cores

7

PROCESSING FLOW

1. Copy input data from CPU memory to GPU

memory

PCIe Bus

A100 memory bandwidth is 25x PCIe gen4

8

PROCESSING FLOW

1. Copy input data from CPU memory to GPU

memory

2. Load GPU program and execute,

caching data on chip for performance

PCIe Bus

9

PROCESSING FLOW

1. Copy input data from CPU memory to GPU

memory

2. Load GPU program and execute,

caching data on chip for performance

3. Copy results from GPU memory to CPU

memory

PCIe Bus

10

• A parallel computing platform and application programming interface (API) model
created by NVIDIA

• Allows software developers and software engineers to use a CUDA-enabled GPUs
for general purpose processing

• Backwards compatible

• The name CUDA was originally an acronym for Compute Unified Device
Architecture

The Five Ways to Accelerate with GPUs

12

5 WAYS TO ACCELERATE WITH GPUS

Libraries

“Drop-in”

Acceleration

CUDA

Programming

Maximum

Performance

OpenACC

Directives

Easily

Accelerate

Applications

Applications

Get straight to

 the science!

Accessibility

Flexibility

Standard

Language

Parallelism

Maximum

Flexibility

13

5 WAYS TO ACCELERATE WITH GPUS

Libraries

“Drop-in”

Acceleration

CUDA

Programming

Maximum

Performance

OpenACC

Directives

Easily

Accelerate

Applications

Applications

Get straight to

 the science!

Accessibility

Flexibility

Standard

Language

Parallelism

Maximum

Flexibility

THOUSANDS OF GPU-ACCELERATED APPLICATIONS

MANUFACTURING,
CAD, & CAE
• Ansys Fluent
• Abaqus SIMULIA
• AutoCAD
• CST Studio

Suite

 …

MEDICAL IMAGING

• aidoc
• PowerGrid
• RadiAnt

 …

DATA SCIENCE
& ANALYTICS

• Anaconda
• H20
• OmniSci

 …

ARTIFICIAL
INTELLIGENCE

• PyTorch
• MXNet
• TensorFlow

 …

MEDIA &
ENTERTAINMENT

• DaVinci Resolve
• Premiere Pro CC
• Redshift Renderer

 …

SUPERCOMPUTING
& HER

• Chroma
• GTC
• MILC
• QUDA
• XGC

 …

OIL & GAS

• Echelon
• RTM
• SPECFEM3D

 …

LIFE SCIENCES

• Amber
• LAMMPS
• GROMACS
• NAMD
• Relion
• VASP

 …

RETAIL

• Everseen
• Deep North
• Third Eye Labs
• AWM
• Malong
• Clarifai
• Antuit

 …

FEDERAL DEFENSE
& OTHER

• ArcGIS Pro
• EVNI
• SocetGXP
• Cyllance
• FaceControl

 …

CLIMATE &
WEATHER

• Cosmos
• Gales
• WRF

 …

COMPUTATIONAL
FINANCE

• O-Quant
Options
Pricing

• MUREX
• MISYS

 …

For a comprehensive list of all apps, please refer to GPU application catalog: https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-product-literature/gpu-applications-catalog.pdf

Transforming Every Industry

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-product-literature/gpu-applications-catalog.pdf

Sample GPU Accelerated Applications

• Amber

• GROMACS

• LAMMPS

• NAMD

• Relion

• Chroma

• GTC

• MILC

• SPECFEM3D

• FUN3D

See https://www.nvidia.com/en-us/gpu-accelerated-applications/

Standard Benchmark speedup on single A100 vs dual CPU

• Amber 13x – 39x

• GROMACS 6x – 9x

• LAMMPS 5x – 18x

• NAMD 6x – 8x

• Relion 4x – 5x

• Chroma 32x

• GTC 14x

• MILC 32x

• SPECFEM3D 29x

• FUN3D 13x

https://developer.nvidia.com/hpc-application-performance

17

SINGLE PARTICLE ANALYSIS

Raw Data
Archive

Particle picking 2D classification 3D classification 3D refinement

Classification and refinement

Frame alignment

High-resolution
density map

Active Project
Data

High speed buffer

Microscope and

Camera

System

Multiple iterations

GPU-accelerated apps (above)

▪ AMIRA

▪ BioEM

▪ cryoSPARC

▪ cyYOLO

▪ Dynamo

▪ EMAN2

▪ emClarity

▪ GCTF

▪ IMOD

▪ MotionCor2

▪ RELION

▪ Tomviz

▪ Topaz

▪ VMD

▪ Warp

Single particle electron microscopy

NVIDIA Parabricks for Alignment & Variant Calling
Speed, Scale, Accuracy

Up to 100x Acceleration

Up to 100x faster for WGS

compared to CPU-only

Higher Accuracy with AI

The power of deep learning for

customized high accuracy analysis

Up to 50% Lower Cost

Up to 50% lower compute cost for

WGS compared to CPU-only

Universal Analysis

Industry-standard tools for all

major sequencers, ported to GPU

Up to 80x Acceleration
Industry-standard results, faster

NVIDIA Parabricks v4.0 Benchmarks

Dataset: HG002 30x WGS, except Mutect2 on SEQC2 50x WGS

CPU: m5.24xlarge; GPU: 8xA100, except DeepVariant & Mutect2 on 8xV100

11 mins ~4 hrs

6 mins ~9 hrs

4 mins ~16 hrs

11 mins ~5 hrs

45 mins ~31 hrs

BWA-MEM

Sort, MarkDups,

Apply BQSR

HaplotypeCaller

DeepVariant

Mutect2

Runtimes on NVIDIA GPU

Runtimes on CPU

NVIDIA BioNeMo
Cloud Service for Customizing and Running Generative AI in Drug Discovery

BioNeMo ModelsBioNeMo Service

WEB

 or

API

Drug Discovery Applications

Biomolecule

Generation

Biomolecule

Representation

Protein Structure

Prediction

Molecular

Docking

AlphaFold2 OpenFold ESMFold

MegaMolBART MoFlow DiffDock

ESM-2nv ESM-2

ProtGPT2

Customizable SOTA Generative AI

Innovate faster and more competitively using

proprietary data sets to train and fine-tune drug

discovery workflows

Easy and Instant Access to

Optimized AI

Eliminate the need for building IT infrastructure,

managing open-source software, optimize for

throughput

Seamless and Scalable AI Service

Ultimate flexibility in experimenting and building

enterprise grade generative AI workflows with

GUI & API Endpoints on scalable managed

infrastructure

NVIDIA DGX

Cloud

22

5 WAYS TO ACCELERATE WITH GPUS

Libraries

“Drop-in”

Acceleration

CUDA

Programming

Maximum

Performance

OpenACC

Directives

Easily

Accelerate

Applications

Applications

Get straight to

 the science!

Accessibility

Flexibility

Standard

Language

Parallelism

Maximum

Flexibility

23

LIBRARIES: EASY, HIGH-QUALITY ACCELERATION

Using libraries enables GPU acceleration without in-depth

knowledge of GPU programming

Many GPU-accelerated libraries follow standard APIs, thus

enabling acceleration with minimal code changes

Libraries offer high-quality implementations of functions

encountered in a broad range of applications

NVIDIA libraries are tuned by experts

EASE OF USE

“DROP-IN”

QUALITY

PERFORMANCE

NVIDIA HPC SDK

Available at developer.nvidia.com/hpc-sdk, on NGC, via Spack, and in the Cloud

Develop for the NVIDIA Platform: GPU, CPU and Interconnect

Libraries | Accelerated C++ and Fortran | Directives | CUDA

7-8 Releases Per Year | Freely Available

Compilers

nvcc nvc

nvc++

nvfortran

Programming
Models

Standard C++ & Fortran

OpenACC & OpenMP

CUDA

Core
Libraries

libcu++

Thrust

CUB

Math
Libraries

cuBLAS cuTENSOR

cuSPARSE cuSOLVER

cuFFT cuRAND

Communication
Libraries

HPC-X

NVSHMEM

NCCL

DEVELOPMENT

Profilers

Nsight

Systems

Compute

Debugger

cuda-gdb

Host

Device

ANALYSIS

SHARP HCOLL

UCX SHMEM

MPI

25

3 STEPS TO CUDA-ACCELERATED APPLICATION

Step 1: Substitute library calls with equivalent CUDA library calls

 saxpy (…) cublasSaxpy (…)

Step 2: Manage data locality

 - with CUDA: cudaMalloc(), cudaMemcpy(), etc.

 - with CUBLAS: cublasAlloc(), cublasSetVector(), etc.

Step 3: Rebuild and link the CUDA-accelerated library

 gcc myobj.o –l cublas

SAXPY is “Single-Precision A times X Plus Y”

GPU Accelerated Libraries (some examples)

CUBLAS – an implementation of BLAS (Basic Linear Algebra Subprograms).

CUFFT – a Fast Fourier Transform library with support for the FFTW API.

CURAND – provides facilities that focus on the simple and efficient generation of high-quality pseudorandom and
quasi-random numbers.

CUSPARSE – contains a set of basic linear algebra subroutines used for handling sparse matrices.

cuSOLVER – GPU-accelerated dense and sparse direct solvers (LAPACK-like features)

CUDA Math Library – GPU-accelerated standard mathematical function library (Available to any CUDA C or CUDA C++
application simply by adding “#include math.h” in your source code)

Thrust – GPU-accelerated library of C++ parallel algorithms and data structures

nvJPEG – High performance GPU-accelerated library for JPEG decoding

ArrayFire – open source library for matrix, signal, and image processing

MAGMA – linear algebra routines for heterogeneous architectures

CHOLMOD – functions for sparse direct solvers

https://developer.nvidia.com/how-to-cuda-libraries

https://github.com/nvidia/cudalibrarysamples

https://github.com/nvidia/cudalibrarysamples

CuPy

• Open-source array library for GPU-
accelerated computing

• Interface is highly compatible with
NumPy and SciPy

• Can be used as a drop-in replacement in
most cases

• Just replace numpy and scipy with
cupy and cupyx.scipy

• Speeds up some operations more than
100X

https://cupy.dev/

RAPIDS

RAPIDS: a suite of open source software libraries and APIs gives you the ability to
execute end-to-end data science and analytics pipelines entirely on GPUs. Licensed
under Apache 2.0

Popular Libraries:

• cuDF – a pandas-like dataframe manipulation library

• cuML – GPU versions of algorithms in scikit-learn

• cuSignal – signal processing library based on SciPy Signal

• cuGraph – Network-X-like accelerated graph analytics library

• cuSpatial – GPU-accelerated GIS and spatiotemporal algorithms

https://rapids.ai/

29

Decision Trees / Random Forests
Linear/Lasso/Ridge/ElasticNet Regression
Logistic Regression
K-Nearest Neighbors
Support Vector Machine Classification and
Regression
Naive Bayes

K-Means
DBSCAN
Spectral Clustering
Principal Components
Singular Value Decomposition
UMAP
Spectral Embedding
T-SNE

Holt-Winters
Seasonal ARIMA / Auto ARIMA

More to come!

Random Forest / GBDT Inference (FIL)

Time Series

Clustering

Decomposition &

Dimensionality Reduction

Preprocessing

Inference

Classification / Regression

Hyper-parameter Tuning

Cross Validation

ALGORITHMS
GPU-accelerated Scikit-Learn

Text vectorization (TF-IDF / Count)
Target Encoding
Cross-validation / splitting

https://github.com/rapidsai/cuml#supported-algorithms

https://github.com/rapidsai/cuml#supported-algorithms

MONAI
A comprehensive Medical AI framework built by experts, accelerated by NVIDIA.

MONAI Label

AI Assisted

Annotation

MONAI Core

Synthetic Image

Generation

Model Training Framework

Auto3D | SSL | FL

MONAI Model Zoo

Pre-trained Models

Medical

Devices

Hospitals

Cloud

Services

Model

Development

Application

Deployment

MONAI Application

Package (MAP)

https://monai.io/

Developer KitsClara Holoscan SDK NVIDIA IGX

NVIDIA IGX Orin DevKit (EA)
Orin, RTX A6000, ConnectX-7

Available Now

NVIDIA Holoscan

Build Validate Deploy

The sensor processing platform for building real-time AI

Developer Productivity

Optimized for High-performance

Sensor Partner Ecosystem

C++, Python

.

Secure

Secure by design

Remote provisioning and

management

.

Medical Grade

Ready for certification

(IEC 60601, 62304).

.

Production Ready

Customizable white-label platform

Long term support

.

NVIDIA FLARE

▪ Apache License 2.0 to catalyze FL research & development

▪ Enables Distributed, Multi-Party Collaborative Learning

▪ Production Scalability with high availability and multi-task execution

▪ Adapt existing ML/DL workflows to a Federated paradigm

▪ Privacy Preserving Algorithms

▪ Homomorphic Encryption & Differential Privacy

▪ Secure Provisioning, Orchestration & Monitoring

▪ Programmable APIs for Extensibility

Available on Github: https://github.com/nvidia/nvFlare

Open-Source SDK for Federated Learning

GPUCPU MULTI-GPU

NVIDIA FLARE

Federated Specification

Training
Flows

Evaluation
Flows

Learning
Algorithms

Privacy Preserving
Algorithms

Management Tools

Learner Confiiguration

Authenticate
Train

Evaluate
Model Updates

NVIDIA FLARE Runtime

Provisioning Orchestration Monitoring

https://github.com/nvidia/nvFlare

Building Generative AI Applications for the Enterprise
Build, customize, and deploy generative AI models with NVIDIA NeMo.

DeploymentTraining and CustomizationData Prep

NeMo Curator NeMo Customizer

…

NVIDIA NIMNeMo Evaluator NeMo Retriever NeMo Guardrails

API Gateway

NVIDIA DGX Cloud

34

5 WAYS TO ACCELERATE WITH GPUS

Libraries

“Drop-in”

Acceleration

CUDA

Programming

Maximum

Performance

OpenACC

Directives

Easily

Accelerate

Applications

Applications

Get straight to

 the science!

Accessibility

Flexibility

Standard

Language

Parallelism

Maximum

Flexibility

OpenACC Directives

OpenACC is a user-driven directive-based performance-portable parallel programming model. It is designed for scientists and
engineers interested in porting their codes to a wide-variety of heterogeneous HPC hardware platforms and architectures with
significantly less programming effort than required with a low-level model.

https://www.openacc.org/

• Simple Compiler hints
• Compiler Parallelizes code
• Works on many-core GPUs & multicore CPUs

C
#pragma acc directive [clause [,] clause] …]

Often followed by a structured code block

Fortran
!$acc directive [clause [,] clause] …]

Often paired with a matching end directive surrounding a structured code block
!$acc end directive

https://www.gpuhackathons.org/

https://www.gpuhackathons.org/

36

subroutine saxpy(n, a, x, y)
 real :: x(:), y(:), a
 integer :: n, i
$!acc kernels
 do i=1,n
 y(i) = a*x(i)+y(i)

 enddo
$!acc end kernels
end subroutine saxpy

...
$ Perform SAXPY on 1M elements
call saxpy(2**20, 2.0, x_d, y_d)
...

void saxpy(int n,

 float a,

 float *x,

 float *restrict y)

{

#pragma acc kernels

 for (int i = 0; i < n; ++i)

 y[i] = a*x[i] + y[i];

}

...

// Perform SAXPY on 1M elements

saxpy(1<<20, 2.0, x, y);

...

A VERY SIMPLE EXERCISE: SAXPY

SAXPY in C SAXPY in Fortran

37

TOP HPC APPS ADOPTING OPENACC
OpenACC - Performance Portability And Ease of Programming

ANSYS Fluent

 VASP
3 of Top 10 Apps

5 CSCS Codes

COSMO

ELEPHANT

RAMSES

ICON

ORB5

GTC

XGC

 ACME

 FLASH

 LSDalton

5 ORNL CAAR
Codes

30000

22500

15000

7500

0

T4 T8 T14 T28

T
im

e
(S

)

CPU (cores)

CPU: (Haswell EP) Intel(R) Xeon(R) CPU E5-2695 v3 @2.30GHz, 2 sockets, 28 cores

GPU: Tesla K80 12+12 GB, Driver 346.46

Fluent Native Solver

Fluent HTC Solver K80 GPU

ANSYS Fluent R18.0 Radiation SolverGaussian

38

5 WAYS TO ACCELERATE WITH GPUS

Libraries

“Drop-in”

Acceleration

CUDA

Programming

Maximum

Performance

OpenACC

Directives

Easily

Accelerate

Applications

Applications

Get straight to

 the science!

Accessibility

Flexibility

Standard

Language

Parallelism

Maximum

Flexibility

CUDA Programming (ultimate control)

CUDA gives you fine-level control over

• thread execution

• use of GPU memory hierarchy

Tune your code for optimal performance

Scale your parallel execution to multiple GPUs and multiple hosts using NCCL and MPI

CUDA API – C, C++, Fortran, Julia, Python

CUDA aware MPI (OpenMPI, MVAPICH, Spectrum MPI, and more)

https://developer.nvidia.com/blog/even-easier-introduction-cuda/

40

void saxpy_serial(int n,

 float a,

 float *x,

 float *y)

{

 for (int i = 0; i < n; ++i)

 y[i] = a*x[i] + y[i];

}

// Perform SAXPY on 1M elements

saxpy_serial(4096*256, 2.0, x, y);

__global__

void saxpy_parallel(int n,

 float a,

 float *x,

 float *y)

{

 int i = blockIdx.x*blockDim.x +

 threadIdx.x;

 if (i < n) y[i] = a*x[i] + y[i];

}

// Perform SAXPY on 1M elements

saxpy_parallel<<<4096,256>>>(n,2.0,x,y);

CUDA C
Standard C Code Parallel C Code

http://developer.nvidia.com/cuda-toolkit

41

// generate 32M random numbers on host

thrust::host_vector<int> h_vec(32 << 20);

thrust::generate(h_vec.begin(),

 h_vec.end(),

 ` rand);

// transfer data to device (GPU)

thrust::device_vector<int> d_vec = h_vec;

// sort data on device

thrust::sort(d_vec.begin(), d_vec.end());

// transfer data back to host

thrust::copy(d_vec.begin(),

 d_vec.end(),

 h_vec.begin());

RAPID PARALLEL C++ DEVELOPMENT

• Resembles C++ STL

• High-level interface

• Enhances developer productivity

• Enables performance portability

between GPUs and multicore CPUs

• Flexible

• CUDA, OpenMP, and TBB backends

• Extensible and customizable

• Integrates with existing software

• Open source

http://developer.nvidia.com/thrust or http://thrust.googlecode.com

42

COMPUTE DEVELOPER TOOLS

Nsight Systems

System-wide application algorithm

tuning

Nsight Compute

CUDA Kernel Profiling and Debugging

Nsight Graphics

Graphics Shader Profiling and

Debugging

IDE Plugins

Nsight Eclipse Edition/Visual
Studio (Editor, Debugger)

cuda-gdb

CUDA Kernel Debugging

Compute Sanitizer

Memory, Race Checking

//Out-of-bounds Array Access

__global__ void oobAccess(int* in, int* out)
{
 int bid = blockIdx.x;
 int tid = threadIdx.x;

 if (bid == 4)
 {
 out[tid] = in[dMem[tid]];
 }
}

int main()
{
 ...
 // Array of 8 elements, where element 4 causes the OOB
 std::array<int, Size> hMem = {0, 1, 2, 10, 4, 5, 6, 7};
 cudaMemcpy(d_mem, hMem.data(), size, cudaMemcpyHostToDevice);

 oobAccess<<<10, Size>>>(d_in, d_out);
 cudaDeviceSynchronize();
 ...

$ /usr/local/cuda-11.0/Sanitizer/compute-sanitizer --destroy-on-device-error kernel --show-backtrace no
basic
========= COMPUTE-SANITIZER
Device: Tesla T4
========= Invalid __global__ read of size 4 bytes
========= at 0x480 in
/tmp/CUDA11.0/ComputeSanitizer/Tests/Memcheck/basic/basic.cu:40:oobAccess(int*,int*)
========= by thread (3,0,0) in block (4,0,0)
========= Address 0x7f551f200028 is out of bounds

43

5 WAYS TO ACCELERATE WITH GPUS

Libraries

“Drop-in”

Acceleration

CUDA

Programming

Maximum

Performance

OpenACC

Directives

Easily

Accelerate

Applications

Applications

Get straight to

 the science!

Accessibility

Flexibility

Standard

Language

Parallelism

Maximum

Flexibility

PLATFORM SPECIALIZATION
CUDA

std::transform(par, x, x+n, y,
 y,[=](float x, float y){

 return y + a*x;
 }

);

matrix_product(par, mA, mB,
mC);

__global__

void saxpy(int n, float a,

 float *x, float *y) {

 int i = blockIdx.x*blockDim.x +

 threadIdx.x;

 if (i < n) y[i] += a*x[i];

}

int main(void) {

 ...

 cudaMemcpy(d_x, x, ...);

 cudaMemcpy(d_y, y, ...);

 saxpy<<<(N+255)/256,256>>>(...);

 cudaMemcpy(y, d_y, ...);

ACCELERATED STANDARD LANGUAGES PLATFORM SPECIALIZATION

do concurrent (i = 1:n)
 y(i) = y(i) + a*x(i)
enddo

C = matmul(A, B)

import cunumeric as np
…
def saxpy(a, x, y):
 y[:] += a*x

c = np.matmul(a, b)

ISO C++ ISO Fortran Python CUDA

https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar/

https://developer.nvidia.com/blog/accelerating-fortran-do-concurrent-with-gpus-and-the-nvidia-hpc-sdk/

https://developer.nvidia.com/cunumeric

STANDARD LANGUAGE PROGRAMMING

https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar/
https://developer.nvidia.com/blog/accelerating-fortran-do-concurrent-with-gpus-and-the-nvidia-hpc-sdk/
https://developer.nvidia.com/cunumeric

HPC PROGRAMMING IN ISO C++

C++20

Scalable Synchronization Library

➢ Express thread synchronization that is portable

and scalable across CPUs and accelerators

➢ In libcu++:

➢ std::atomic<T>

➢ std::barrier

➢ std::counting_semaphore

➢ std::atomic<T>::wait/notify_*

➢ std::atomic_ref<T>

C++23 and Beyond

Executors / Senders-Recievers

➢ Simplify launching and managing parallel work

across CPUs and accelerators

std::mdspan/mdarray

➢ HPC-oriented multi-dimensional array

abstractions.

Range-Based Parallel Algorithms

➢ Improved multi-dimensional loops

Linear Algebra

➢ C++ standard algorithms API to linear algebra

➢ Maps to vendor optimized BLAS libraries

Extended Floating Point Types

➢ First-class support for formats new and old:
std::float16_t/float64_t

ISO is the place for portable concurrency and parallelism

C++17

Parallel Algorithms

➢ In NVC++

➢ Parallel and vector concurrency

Forward Progress Guarantees

➢ Extend the C++ execution model for accelerators

Memory Model Clarifications

➢ Extend the C++ memory model for accelerators

Preview support coming to NVC++

C++17 PARALLEL ALGORITHMS
Lulesh Hydrodynamics Mini-app

codesign.llnl.gov/lulesh

➢ ~9000 lines of C++

➢ Parallel versions in MPI, OpenMP, OpenACC,
CUDA, RAJA, Kokkos, ISO C++…

➢ Designed to stress compiler vectorization,
parallel overheads, on-node parallelism

static inline
void CalcHydroConstraintForElems(Domain &domain, Index_t length,

Index_t *regElemlist, Real_t dvovmax, Real_t& dthydro)
{
#if _OPENMP
const Index_t threads = omp_get_max_threads();
Index_t hydro_elem_per_thread[threads];
Real_t dthydro_per_thread[threads];

#else
Index_t threads = 1;
Index_t hydro_elem_per_thread[1];
Real_t dthydro_per_thread[1];

#endif
#pragma omp parallel firstprivate(length, dvovmax)
{

Real_t dthydro_tmp = dthydro ;
Index_t hydro_elem = -1 ;

#if _OPENMP
Index_t thread_num = omp_get_thread_num();

#else
Index_t thread_num = 0;

#endif
#pragma omp for

for (Index_t i = 0 ; i < length ; ++i) {
Index_t indx = regElemlist[i] ;

if (domain.vdov(indx) != Real_t(0.)) {
Real_t dtdvov = dvovmax / (FABS(domain.vdov(indx))+Real_t(1.e-20)) ;

if (dthydro_tmp > dtdvov) {
dthydro_tmp = dtdvov ;
hydro_elem = indx ;

}
}

}
dthydro_per_thread[thread_num] = dthydro_tmp ;
hydro_elem_per_thread[thread_num] = hydro_elem ;

}
for (Index_t i = 1; i < threads; ++i) {

if(dthydro_per_thread[i] < dthydro_per_thread[0]) {
dthydro_per_thread[0] = dthydro_per_thread[i];
hydro_elem_per_thread[0] = hydro_elem_per_thread[i];

}
}
if (hydro_elem_per_thread[0] != -1) {

dthydro = dthydro_per_thread[0] ;
}
return ;

}
C++ with OpenMP

STANDARD C++

➢ Composable, compact and elegant

➢ Easy to read and maintain

➢ ISO Standard

➢ Portable – nvc++, g++, icpc, MSVC, …

static inline
void CalcHydroConstraintForElems(Domain &domain, Index_t length,

Index_t *regElemlist, Real_t dvovmax, Real_t &dthydro)
{
dthydro = std::transform_reduce(

std::execution::par, counting_iterator(0), counting_iterator(length),
dthydro, [](Real_t a, Real_t b) { return a < b ? a : b; },
[=, &domain](Index_t i)

{
Index_t indx = regElemlist[i];
if (domain.vdov(indx) == Real_t(0.0)) {
return std::numeric_limits<Real_t>::max();

} else {
return dvovmax / (std::abs(domain.vdov(indx)) + Real_t(1.e-20));

}
});

}

Standard C++

C++ STANDARD PARALLELISM

Same ISO C++ Code

Lulesh Performance

1 1.03
1.53

2.08

13.57

0

2

4

6

8

10

12

14

16

OpenMP on 64c EPYC
7742

OpenMP on 64c EPYC
7742

Standard C++ on 64c
EPYC 7742

Standard C++ on 64c
EPYC 7742

Standard C++ on A100

NVC++

GCC

ACCELERATED STANDARD LANGUAGES
Parallel performance for wherever your code runs

std::transform(par, x, x+n, y,
 y,[=](float x, float y){
 return y + a*x;
 }
);

import cunumeric as np
…
def saxpy(a, x, y):
 y[:] += a*x

do concurrent (i = 1:n)
 y(i) = y(i) + a*x(i)
enddo

ISO C++ ISO Fortran Python

CPU GPU

nvc++ -stdpar=multicore
nvfortran –stdpar=multicore

legate –cpus 16 saxpy.py

nvc++ -stdpar=gpu
nvfortran –stdpar=gpu
legate –gpus 1 saxpy.py

50

5 WAYS TO ACCELERATE WITH GPUS

Libraries

“Drop-in”

Acceleration

CUDA

Programming

Maximum

Performance

OpenACC

Directives

Easily

Accelerate

Applications

Applications

Get straight to

 the science!

Accessibility

Flexibility

Standard

Language

Parallelism

Maximum

Flexibility

	Default Section
	Slide 1: 5 Ways to Accelerate with GPUs
	Slide 2
	Slide 3: Accelerated Computing
	Slide 4: How GPU Acceleration Works
	Slide 5: GPU Architecture
	Slide 6: GPU Architecture
	Slide 7: Processing Flow
	Slide 8: Processing Flow
	Slide 9: Processing Flow
	Slide 10
	Slide 11
	Slide 12: 5 Ways to Accelerate with gpus
	Slide 13: 5 Ways to Accelerate with gpus
	Slide 14: Thousands of GPU-Accelerated applications
	Slide 15: Sample GPU Accelerated Applications
	Slide 16: Standard Benchmark speedup on single A100 vs dual CPU
	Slide 17: Single particle analysis
	Slide 19: NVIDIA Parabricks for Alignment & Variant Calling
	Slide 20: Up to 80x Acceleration
	Slide 21: NVIDIA BioNeMo
	Slide 22: 5 Ways to Accelerate with gpus
	Slide 23: Libraries: Easy, High-Quality Acceleration
	Slide 24: NVIDIA HPC SDK
	Slide 25: 3 Steps to CUDA-accelerated application
	Slide 26: GPU Accelerated Libraries (some examples)
	Slide 27: CuPy
	Slide 28: RAPIDS
	Slide 29: Algorithms
	Slide 30: MONAI
	Slide 31: NVIDIA Holoscan
	Slide 32: Nvidia flare
	Slide 33: Building Generative AI Applications for the Enterprise
	Slide 34: 5 Ways to Accelerate with gpus
	Slide 35: OpenACC Directives
	Slide 36: A Very Simple Exercise: SAXPY
	Slide 37: top HPC apps adopting OpenACC
	Slide 38: 5 Ways to Accelerate with gpus
	Slide 39: CUDA Programming (ultimate control)
	Slide 40: CUDA C
	Slide 41: Rapid Parallel C++ Development
	Slide 42: COMPUTE DEVELOPER TOOLS
	Slide 43: 5 Ways to Accelerate with gpus
	Slide 44: Standard Language Programming
	Slide 45: HPC PROGRAMMING IN ISO C++
	Slide 46: C++17 Parallel algorithms
	Slide 47: STANDARD C++
	Slide 48: C++ Standard parallelism
	Slide 49: Accelerated Standard Languages
	Slide 50: 5 Ways to Accelerate with gpus
	Slide 51

