
ACCELERATED GENERAL DATA SCIENCE IN MEDICINE WITH CUPY, RAPIDS & NUMBA
HUIWEN JU - HJU@NVIDIA.COM - SOLUTIONS ARCHITECT, HIGHER EDUCATION & RESEARCH

4/17/2024 @ MOUNT SINAI

mailto:hju@nvidia.com

AGENDA

Overview of GPU Computing

GPU-Accelerated Numerical Computing with CuPy

GPU-Accelerated Data Science with RAPIDS

Custom GPU Kernels with Numba

Frameworks Interoperability – Data Conversion Bottleneck

ZERO-COPY end-to-end pipeline – example jupyter notebook on Minerva

Overview of GPU Computing

Combination of Accelerated Computing, Data Center Scale and AI

MILLION-X SPEEDUP FOR INNOVATION AND DISCOVERY

DRUG DISCOVERY
COVID Multi-Scale Modeling

RENEWABLE ENERGY
Real-time Fusion Reactor Simulation

INDUSTRIAL HPC
Real-time CFD

1980 1990 2000 2010 2020

Single-threaded perf

1.5X per year

1.1X per year
102

103

104

105

106

107

109

108

101

MACHINE

LEARNING

SCALE

UP & OUT

ACCELERATED

COMPUTING

ASTROPHYSICS
Gravitational Wave Detection

5
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

5
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

ACCELERATED COMPUTING WITH GPUS

Application Code

+

5% of Code

Compute-Intensive Functions

Rest of Sequential
CPU Code

GPU
Optimized for
Parallel Tasks

A FEW GENERAL TIPS FOR SUCCESSFUL GPU COMPUTING

• Minimize data movement to and from the GPU

• What happens on the GPU, stays on the GPU!

• PCI express is a bottleneck for data movement

• Try NVLink for GPU peer-to-peer, 600 GB/s!

• GPUs are parallel processing machines

• Leave serial operations to the CPU

• Look for high arithmetic intensity, chunky loops, dense linear algebra

• Experiment with reduced precision, mixed-precision iterative refinement

• High memory bandwidth - Fast FFTs.

• Stand on the Shoulders of Those Before You!

• There is a rich ecosystem of GPU-accelerated libraries

https://developer.nvidia.com/gpu-accelerated-libraries

• Profiling tools (Nsight) are compatible with Python GPU tools

 We care about performance – make a relevant test suite!

• Many applications are already GPU-accelerated

• https://www.nvidia.com/en-us/gpu-accelerated-applications/

• https://ngc.nvidia.com/

CPU

Host Memory
DDR4

T4
GPU

GPU Memory
GDDR6

~50GB/s

~16GB/s

PCIe gen3

~320GB/s

https://developer.nvidia.com/gpu-accelerated-libraries
https://www.nvidia.com/en-us/gpu-accelerated-applications/
https://catalog.ngc.nvidia.com/

GPU-Accelerated Numerical Computing with CuPy

NUMERICAL COMPUTING IN PYTHON

• Mathematical focus
• Operates on arrays of data

• ndarray, holds data of same type

• Many years of development
• Highly tuned for CPUs

• NumPy like interface
• Trivially port code to GPU
• Copy data to GPU

• CuPy ndarray

• Data interoperability with DL
frameworks, RAPIDS, and Numba

• Uses high tuned NVIDIA libraries
• Can write custom CUDA functions

CUPY
A NumPy like interface to GPU-acceleration ND-Array operations

import cupy as cp

size = 4096

A = cp.random.randn(size,size)

Q, R = cp.lingalg.qr(A)

import numpy as np

size = 4096

A = np.random.randn(size,size)

Q, R = np.lingalg.qr(A)

BEFORE AFTER

52x Speedup!

CUNUMERIC
Automatic NumPy Acceleration and Scalability

for _ in range(iter):
un = u.copy()

vn = v.copy()
b = build_up_b(rho, dt, dx, dy, u, v)
p = pressure_poisson_periodic(b, nit, p, dx, dy)

…

Extracted from “CFD Python” course at https://github.com/barbagroup/CFDPython
Barba, Lorena A., and Forsyth, Gilbert F. (2018). CFD Python: the 12 steps to Navier-Stokes equations. Journal of
Open Source Education, 1(9), 21, https://doi.org/10.21105/jose.00021

cuNumeric transparently accelerates and scales existing Numpy
workloads

Program from the edge to the supercomputer in Python by
changing 1 import line

Pass data between Legate libraries without worrying about
distribution or synchronization requirements

Learn more at the landing page

cuNumeric

https://github.com/barbagroup/CFDPython
https://doi.org/10.21105/jose.00021
https://developer.nvidia.com/cunumeric

GPU-Accelerated Data Science with RAPIDS

RAPIDS ACCELERATES POPULAR DATA SCIENCE TOOLS
Delivering enterprise-grade data science solutions in pure python

Pre-Processing
cuIO & cuDF

Data Preparation VisualizationModel Training

Machine Learning
cuML

Graph Analytics
cuGRAPH

Deep Learning
TensorFlow, PyTorch,

MxNet

Vizualization
CuXFILTER <> pyViz

Dask

GPU Memory

The RAPIDS suite of open source
software libraries gives you the
freedom to execute end-to-end data
science and analytics pipelines
entirely on GPUs.

RAPIDS utilizes NVIDIA
CUDA primitives for low-level
compute optimization and exposes
GPU parallelism and high-bandwidth
memory speed through user-friendly
Python interfaces like PyData.

With Dask, RAPIDS can scale out to
multi-node, multi-GPU cluster to
power through big data processes.

RAPIDS enables the Python stack with the power of NVIDIA GPUs

https://rapids.ai/

Pre-Processing
Pandas

Data Preparation VisualizationModel Training

Machine Learning
Scikit-Learn

Graph Analytics
NetworkX

Deep Learning
TensorFlow, PyTorch,

MxNet

Vizualization
Matplotlib

Dask

CPU Memory

TRADITIONAL DATA SCIENCE APPLICATIONS

Pre-Processing
cuIO & cuDF

Data Preparation VisualizationModel Training

Machine Learning
cuML

Graph Analytics
cuGRAPH

Deep Learning
TensorFlow, PyTorch,

MxNet

Vizualization
CuXFILTER, pyViz

Dask

GPU Memory

RAPIDS: GPU-ACCELERATED DATA SCIENCE
WITH API ALIGNMENT

DATA SCIENCE API ALIGNMENT
Open source software that accelerates popular data science packages

Function CPU GPU/RAPIDS

Data handling pandas cuDF **

Machine learning scikit-learn cuML **

Graph analytics NetworkX cuGraph

Geospatial GeoPandas/SciPy cuSpatial

Signals SciPy.signal cuSignal

Image Processing scikit-image cuCIM

The RAPIDS and GPU-accelerated PyData stack bring GPGPU to data scientists at the Python layer providing
familiar APIs without the steep curve of learning new programming language or paradigm

Pre-Processing
cuIO & cuDF

Data Preparation VisualizationModel Training

Machine Learning
cuML

Graph Analytics
cuGRAPH

Deep Learning
TensorFlow, PyTorch,

MxNet

Vizualization
CuXFILTER <> pyViz

Dask

GPU Memory

RAPIDS: GPU-ACCELERATED DATA SCIENCE
WITH API ALIGNMENT

THE BURDEN OF DATA PROCESSING: EXTRACT, TRANSFORM, LOAD

The Average Data Scientist Spends 90+% of Their Time in ETL as Opposed to Training Models

GPU-ACCELERATED PANDAS WITH CUDF

+• Use RAPIDS CuDF to accelerate computationally

expensive ETL operations

• Manipulate GPU DataFrames following the Pandas API

• Create GPU DataFrames from Numpy arrays, CuPy

arrays, Pandas DataFrames, and PyArrow Tables

• Python interface to CUDA C++ library with additional

functionality

• Available via pip and conda

import cudf as pd

import numpy as np

from time import time

import matplotlib.pyplot as plt

import seaborn as sns

%matplotlib inline

wine_set = pd.read_csv("data/winequality.csv")

wine_set.head(n=5)

wine_set.tail(n=5)

Pre-Processing
cuIO & cuDF

Data Preparation VisualizationModel Training

Machine Learning
cuML

Graph Analytics
cuGRAPH

Deep Learning
TensorFlow, PyTorch,

MxNet

Vizualization
CuXFILTER <> pyViz

Dask

GPU Memory

RAPIDS: GPU-ACCELERATED DATA SCIENCE
WITH API ALIGNMENT

DATASET SIZES CONTINUE TO GROW

from sklearn.datasets import make_moons

import pandas

X, y = make_moons(n_samples=int(1e2),

noise=0.05, random_state=0)

X = pandas.DataFrame({'fea%d'%i: X[:, i]

for i in range(X.shape[1])})

from sklearn.cluster import DBSCAN

dbscan = DBSCAN(eps = 0.3, min_samples = 5)

y_hat = dbscan.fit_predict(X)

DATASET SIZES CONTINUE TO GROW

from sklearn.datasets import make_moons

import cudf

X, y = make_moons(n_samples=int(1e2),

noise=0.05, random_state=0)

X = cudf.DataFrame({'fea%d'%i: X[:, i]

for i in range(X.shape[1])})

from cuml import DBSCAN

dbscan = DBSCAN(eps = 0.3, min_samples = 5)

y_hat = dbscan.fit_predict(X)

CUML ALGORITHMS

Decision Trees / Random Forests
Linear/Lasso/Ridge/LARS/ElasticNet Regression
Logistic Regression
K-Nearest Neighbors (exact or approximate)
Support Vector Machine Classificationand
Regression
Naive Bayes

Text vectorization (TF-IDF / Count)
Target Encoding
Cross-validation / splitting

Holt-Winters
Seasonal ARIMA / AutoARIMA

More to come!

Time Series

Preprocessing

Inference

Classification / Regression

Hyper-parameter Tuning

Cross Validation

Random Forest / GBDT Inference (FIL)

K-Means
DBSCAN
Spectral Clustering
Principal Components (including iPCA)
Singular Value Decomposition
UMAP
Spectral Embedding T-SNE

Clustering Decomposition

Dimensionality Reduction

24

1. Medical imaging specific AI framework

2. Superior performance

3. Friendly community

MONAI Core

Optimize data loading

cuCIM – Whole Slide Imaging (digital pathology)

cuCIM - a library within RAPIDS

T
h
ro

u
g
h
p
u
t

https://rapids.ai/

25

1. Medical imaging specific AI framework

2. Superior performance

3. Friendly community

MONAI Core
Optimize GPU utilization

Do transforms on GPU

cuCIM -> common transforms in digital pathology

MONAI Core pathology tutorials

https://github.com/Project-MONAI/tutorials/tree/main/pathology

26

27

GTC session - Deep Learning and Accelerated Computing for Single-Cell Genomic Data [S32511]
Tutorial jupyter notebooks - https://github.com/NVIDIA-Genomics-Research/rapids-single-cell-examples

https://gtc21.event.nvidia.com/media/Deep%20Learning%20and%20Accelerated%20Computing%20for%20Single-Cell%20Genomic%20Data%20%5BS32511%5D/1_wu0g9xag/?ncid=GTCS21-NVGVACEK

INSTALLATION

NVIDIA NGC

RAPIDS Container

https://ngc.nvidia.com

RAPIDS Release Selector

(conda, container, source)

https://rapids.ai

Available on Minerva!

Prebuilt RAPIDS modules

https://ngc.nvidia.com/
https://rapids.ai/

Custom GPU Kernels with Numba

WHAT IS NUMBA? WHEN DO WE USE IT?

Opt-in

Numba only compiles

functions you specify. You

don't need to compile the full

program

Just-in-time compiler PyData ecosystem

Numba is a JIT compiler for

Python functions that you

specify. Numba targets both

CPU and GPU.

While not all functions

in python can be compiled

with Numba,

the PyData ecosystem is well
covered.

Numba provides the Python programmer a simple way to write customizable GPU accelerated code
without needing CUDA C/C++

Lower-level CUDA kernel development without leaving Python

NUMBA VECTORIZE
NumPy ufuncs operate on data in element-by-element order, and Numba vectorize allows us to accelerate those

types of operations

size_list = [1000, 10000, 100000, 1000000, 10000000,

100000000]

numpy_times = []

numba_times = []

for size in size_list:

 x=np.random.randn(size).astype(np.float32) + 1

 y=np.random.randn(size).astype(np.float32) + 1.1

 # Run baseline Numpy implementation

 2 * (x - y) / (x + y)

 # Run our vectorized Numba function

 rel_diff(x, y)

With this "vectorized" Numba function we see improved

performance as we increase our input size, making this

solution ideal for large problem sizes.

from numba import vectorize

import numpy as np

import time

@vectorize

def rel_diff(x, y):

 return 2 * (x - y) / (x + y)

NUMBA CUDA
Lower-level CUDA kernel development without leaving Python

import numba

@cuda.jit()

def vector_add(arr1, arr2, result):

 startx = cuda.grid(1)

 stridex = cuda.gridsize(1)

 arr_size = arr1.shape[0]

 for i in range(startx, arr_size, stridex):

 result[i] = arr1[i] + arr2[i]

import numba

@jit()

def vector_add(arr1, arr2):

 arr_size = arr1.shape[0]

 result = np.empty(size=(arr_size))

 for i in prange(arr_size):

 result[i] = arr1[i] + arr2[i]

 return result

BEFORE AFTER

▪ Initialize data or copy data to GPU

▪ Lower-level support for custom CUDA kernels without C/C++

▪ JIT compiled kernels for fast execution

▪ Move data between DL frameworks, RAPIDS, and Numba

SUMMARY

Function CPU GPU/RAPIDS

Data handling pandas cuDF

Machine learning scikit-learn cuML

Function CPU GPU

Numerical Computing NumPy CuPy

JIT Kernels Numba Numba

NVIDIA DEEP LEARNING INSTITUTE

Self-paced courses

Instructor-led workshops

NumbaRAPIDS

https://www.nvidia.com/en-sg/training/online/
https://www.nvidia.com/en-sg/training/instructor-led-workshops/

SESSIONS AT PREVIOUS GTC
SEARCH ON NVIDIA ON DEMAND

If you found this content useful, please consider tuning into these sessions too:

▪ GPU-accelerated Feature Extraction and Image Similarity in Pure Python [S41661]

▪ Enabling Python User-Defined Functions in Accelerated Applications with Numba [S41056]

▪ No More Porting: Coding for GPUs with Standard C++, Fortran, and Python [S41496]

▪ Shifting through the Gears of GPU Programming: Understanding Performance and Portability Trade-offs [S41620]

▪ Evaluating Your Options for Accelerated Numerical Computing in Pure Python

https://www.nvidia.com/en-us/on-demand/

ML FRAMEWORKS
INTEROPERABILITY

38

FRAMEWORK INTEROPERABILITY
When a single framework is not enough

39

MIX AND MATCH WORKFLOWS
Use the right tool, for the right job, in the right way

Pandas

Numpy

cuDF

JAX

Numba

CuPy

TensorFlow

PyTorch

MXNet

GPU zero-copy
Copy & convert

40

MITIGATE DATA CONVERSION

BOTTLENECK

42

DLPACK
Sharing tensors the easiest way

DLPack is an open in-memory tensor structure which

enables:

– Easier sharing of tensors and operators between

deep learning frameworks.

– Easier wrapping of vendor level operator

implementations, allowing collaboration when

introducing new devices/ops.

– Quick swapping of backend implementations,

like different version of BLAS.

– For final users, this could bring more operators,

and possibility of mixing usage between

frameworks.

43

CUDA ARRAY INTERFACE 3.0
Seamless Ingestion

The __cuda_array_interface__ attribute returns a dictionary (dict) that must contain

the following entries:

shape: (integer, ...)

A tuple of int (or long) representing the size of each dimension.

typestr: str

The type string. This has the same definition as typestr in the numpy array interface.

data: (integer, boolean)

The data is a 2-tuple. The first element is the data pointer as a Python int (or long).

The data must be device-accessible. For zero-size arrays, use 0 here. The second

element is the read-only flag as a Python bool.

version: integer

An integer for the version of the interface being exported. The current version is 3.

ingests

DLPACK & CUDA ARRAY INTERFACE

CUDA Array Interface adopted by:

• Numba

• CuPy

• PyTorch

• PyArrow

• mpi4py

• ArrayViews

• JAX

• PyCUDA

• DALI

• RAPIDS

• cuDF

• cuML

• cuSignal

• RMM

CUDA

45

Summary

Complex workloads make use of multiple libraries.

Interoperability via DLPack and CUDA Array Interface (CAI).

Zero-copy and no data conversion is the goal. Not always possible, yet.

46

ZERO-COPY END-TO-END PIPELINE
Unsupervised outlier detection

P

Q

R

ST

T

Disclaimer
Technical example pipeline demonstrating framework interoperability.

Not suitable for production in medical environments.

What we have:

‐ 20 hours stream of continuously measured
electrocardiogram (ECG) data.

‐ Univariate and uniformly sampled time
series as CSV on disk.

What we are doing:

‐ Unsupervised segmentation of ECG stream
into ~ 100k heartbeats.

‐ Training of Variational Autoencoder (VAE) for
outlier detection.

‐ Visualization of the latent space &
generated heartbeats.

S

47

END-TO-END PIPELINE
Parse ECG from CSV

RAPIDS

cuDF
CuPy Numba PyTorch

RAPIDS

cuxfilter

GPU

Load a comma-separated-values
(CSV) dataset into a DataFrame

48

END-TO-END PIPELINE
Band-Pass Filter

RAPIDS

cuDF
CuPy Numba PyTorch

RAPIDS

cuxfilter

FFT based convolution QRS Complex Detection

49

END-TO-END PIPELINE
Non-trivial Preprocessing

RAPIDS

cuDF
CuPy Numba PyTorch

RAPIDS

cuxfilter

1D non-max suppression normalization and embedding

50

END-TO-END PIPELINE
Variational Autoencoder (VAE)

RAPIDS

cuDF
CuPy Numba PyTorch

RAPIDS

cuxfilter

x

mu

log

var

xzq(z|x) p(x|z)

~p(z)

51

END-TO-END PIPELINE
Visualization

RAPIDS

cuDF
CuPy Numba PyTorch

RAPIDS

cuxfilter

52

MIX AND MATCH WORKFLOWS
Endless possibilities!

And many others!

RAPIDS

cuDF
CuPy Numba PyTorch

RAPIDS

cuxfilter

RAPIDS

cuDF
JAX Numba TensorFlow

RAPIDS

cuxfilter

RAPIDS

cuDF
Numpy Numba MXNet Plotly Dash

Pandas CuPy PyCuda PyTorch Bokeh

Pandas Numpy Numba Chainer Datashader

54

ADDITIONAL RESOURCE

Tech blog & GTC session

https://developer.nvidia.com/blog/machine-learning-frameworks-interoperability-part-1-memory-layouts-and-memory-pools/

55

GTC SESSIONS ON DATA SCIENCE
NVIDIA On Demand - Latest Data Science playlist

https://www.nvidia.com/en-us/on-demand/?regcode=no-ncid&ncid=no-ncid
https://www.nvidia.com/en-us/on-demand/playlist/playList-06c86c32-4e1d-4e67-830f-b1e06f417b5c/

Q & A
HUIWEN JU - HJU@NVIDIA.COM - SOLUTIONS ARCHITECT, HIGHER EDUCATION & RESEARCH

4/17/2024 @ MOUNT SINAI

mailto:hju@nvidia.com

