HUIWEN JU - HJU@NVIDIA.COM - SOLUTIONS ARCHITECT, HIGHER EDUCATION & RESEARCH

4/17/2024 @ MOUNT SINAI

ACCELERATED GENERAL DATA SCIENCE IN MEDICINE WITH CUPY, RAPIDS & NUMBA

DVIDIA

AGENDA

Overview of GPU Computing

GPU-Accelerated Numerical Computing with CuPy

GPU-Accelerated Data Science with RAPIDS

Custom GPU Kernels with Numba

Frameworks Interoperability - Data Conversion Bottleneck

ZERO-COPY end-to-end pipeline - example jupyter notebook on Minerva

Overview of GPU Computing

MILLION-X SPEEDUP FOR INNOVATION AND DISCOVERY Combination of Accelerated Computing, Data Center Scale and Al

GPU Optimized for Parallel Tasks

5% of Code

ACCELERATED COMPUTING WITH GPUS

Rest of Sequential CPU Code

CPU Serial Tasks

A FEW GENERAL TIPS FOR SUCCESSFUL GPU COMPUTING

• Minimize data movement to and from the GPU

- What happens on the GPU, stays on the GPU!
- PCI express is a bottleneck for data movement lacksquare
- Try NVLink for GPU peer-to-peer, 600 GB/s! •

• GPUs are parallel processing machines

- Leave serial operations to the CPU
- Look for high arithmetic intensity, chunky loops, dense linear algebra ${}^{\bullet}$
- Experiment with reduced precision, mixed-precision iterative refinement
- High memory bandwidth Fast FFTs. \bullet

Stand on the Shoulders of Those Before You!

- There is a rich ecosystem of GPU-accelerated libraries https://developer.nvidia.com/gpu-accelerated-libraries
- Profiling tools (Nsight) are compatible with Python GPU tools \bullet We care about performance - make a relevant test suite!
- Many applications are already GPU-accelerated
- https://www.nvidia.com/en-us/gpu-accelerated-applications/
- https://ngc.nvidia.com/

Host Memory DDR4

~50GB/s

GPU-Accelerated Numerical Computing with CuPy

- Mathematical focus
- Operates on arrays of data • *ndarray*, holds data of same type
- Many years of development
- Highly tuned for CPUs

NUMERICAL COMPUTING IN PYTHON

• NumPy like interface Trivially port code to GPU Copy data to GPU • CuPy ndarray Data interoperability with DL frameworks, RAPIDS, and Numba • Uses high tuned NVIDIA libraries Can write custom CUDA functions

import numpy as np size = 4096A = np.random.randn(size, size) Q, R = np.lingalg.qr(A)

BEFORE

CUPY

A NumPy like interface to GPU-acceleration ND-Array operations

AFTER

A = cp.random.randn(size, size)

Q, R = cp.lingalg.qr(A)

cuNumeric

cuNumeric transparently accelerates and scales existing Numpy workloads

Program from the edge to the supercomputer in Python by changing 1 import line

Pass data between Legate libraries without worrying about distribution or synchronization requirements

Learn more at the <u>landing page</u>

...

```
for _ in range(iter):
    un = u.copy()
    vn = v.copy()
    b = build_up_b(rho, dt, dx, dy, u, v)
    p = pressure_poisson_periodic(b, nit, p, dx, dy)
```

Extracted from "CFD Python" course at <u>https://github.com/barbagroup/CFDPython</u> Barba, Lorena A., and Forsyth, Gilbert F. (2018). CFD Python: the 12 steps to Navier-Stokes equations. Journal of *Open Source Education*, **1**(9), 21, <u>https://doi.org/10.21105/jose.00021</u>

CUNUMERIC

Automatic NumPy Acceleration and Scalability

Distributed NumPy Performance (weak scaling) ← cuPy ← Legate

32 64 128 256 512 1024 8 16 4

Relative dataset size Number of GPUs

GPU-Accelerated Data Science with RAPIDS

RAPIDS ACCELERATES POPULAR DATA SCIENCE TOOLS Delivering enterprise-grade data science solutions in pure python

The RAPIDS suite of open source software libraries gives you the freedom to execute end-to-end data science and analytics pipelines entirely on GPUs.

RAPIDS utilizes **NVIDIA CUDA** primitives for low-level compute optimization and exposes GPU parallelism and high-bandwidth memory speed through user-friendly Python interfaces like PyData.

With Dask, RAPIDS can scale out to multi-node, multi-GPU cluster to power through big data processes.

RAPIDS enables the Python stack with the power of NVIDIA GPUs

TRADITIONAL DATA SCIENCE APPLICATIONS

Pandas

RAPIDS: GPU-ACCELERATED DATA SCIENCE WITH API ALIGNMENT

Function

Data handling Machine learning Graph analytics Geospatial Signals Image Processing

DATA SCIENCE API ALIGNMENT Open source software that accelerates popular data science packages

	CPU
	pandas
Š	scikit-learn
	NetworkX
	GeoPandas/SciPy
	SciPy.signal
S	scikit-image

The RAPIDS and GPU-accelerated PyData stack bring GPGPU to data scientists at the Python layer providing familiar APIs without the steep curve of learning new programming language or paradigm

GPU/RAPIDS

- cuDF **
- cuML **
- cuGraph
- cuSpatial
- cuSignal
- cuCIM

RAPIDS: GPU-ACCELERATED DATA SCIENCE WITH API ALIGNMENT

THE BURDEN OF DATA PROCESSING: EXTRACT, TRANSFORM, LOAD

The Average Data Scientist Spends 90+% of Their Time in ETL as Opposed to Training Models

GPU-ACCELERATED PANDAS WITH CUDF

- Use RAPIDS CuDF to accelerate computationally expensive ETL operations
- Manipulate GPU DataFrames following the Pandas API
- Create GPU DataFrames from Numpy arrays, CuPy arrays, Pandas DataFrames, and PyArrow Tables
- Python interface to CUDA C++ library with additional functionality
- Available via pip and conda

wine_	_Se
wine	56


```
import cudf as pd
import numpy as np
from time import time
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
wine set = pd.read csv("data/winequality.csv")
      et.head(n=5)
wine set.tail(n=5)
```


RAPIDS: GPU-ACCELERATED DATA SCIENCE WITH API ALIGNMENT

from sklearn.datasets import make_moons import pandas

- X, y = make_moons(n_samples=int(le2),
- X = pandas.DataFrame({'fea%d'%i: X[:, i]

DATASET SIZES CONTINUE TO GROW

noise=0.05, random_state=0)

for i in range(X.shape[1])})

from sklearn.cluster import DBSCAN dbscan = DBSCAN(eps = 0.3, min_samples = 5)

y_hat = dbscan.fit_predict(X)

from sklearn.datasets import make_moons import cudf

- X, $y = make_moons(n_samples=int(le2))$
- X = cudf.DataFrame({'fea%d'%i: X[:, i]

DATASET SIZES CONTINUE TO GROW

noise=0.05, random_state=0)

for i in range(X.shape[1])})

from **cuml** import DBSCAN dbscan = DBSCAN(eps = 0.3, min_samples = 5)

y_hat = dbscan.fit_predict(X)

Classification / Regression

Decision Trees / Random Forests Linear/Lasso/Ridge/LARS/ElasticNet Regression Logistic Regression K-Nearest Neighbors (exact or approximate) Support Vector Machine Classification and Regression Naive Bayes

Inference

Random Forest / GBDT Inference (FIL)

Preprocessing

Text vectorization (TF-IDF / Count) Target Encoding Cross-validation / splitting

CUML ALGORITHMS

Clustering Decomposition Dimensionality Reduction

Spectral Clustering Principal Components (including iPCA) Singular Value Decomposition

Spectral Embedding T-SNE

Time Series

Holt-Winters Seasonal ARIMA / Auto ARIMA

Hyper-parameter Tuning

Cross Validation

More to come!

1. Medical imaging specifi

2. Superior performance

3. Friendly community

MONAL Core

Optimize data loading

cuCIM - Whole Slide Imaging (digital pathology)

cuCIM - a library within <u>RAPIDS</u>

2. Superior performance

MONAL Core **Optimize GPU utilization**

cuCIM -> common transforms in digital pathology

13	1
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	

Do transforms on GPU

```
from monai.transforms import (
   Activations,
   AsDiscrete,
   CastToType,
   CastToTyped,
   Compose,
   CuCIM,
   GridSplitd,
   Lambdad,
   Rand<mark>CuCIM</mark>,
   RandFlipd,
   RandRotate90d,
   RandZoomd,
   ScaleIntensityRanged,
   ToCupy,
   ToNumpyd,
   TorchVisiond,
   ToTensor,
   ToTensord,
```

MONAI Core pathology tutorials

SINGLE-CELL RNA-SEQ ANALYSIS USING RAPIDS

🕺 NVIDIA.

GPU ANALYSIS OF 1 MILLION CELLS From 3.5 hours to 8 minutes

	CPU Runtime n1-highmem-32 32 vCPUs	GPU runtime a2-highgpu-1g Tesla A100 40GB GPU	GPU acceleration
Preprocessing	28m35s	3m21s	9x
PCA	29.2s	11.4s	2.6x
t-SNE	1hr23m10s	28s	178x
KNN	3m5s	46s	4x
UMAP	21m47s	13.4s	98x
-means clustering	2m6s	1.9s	66x
ouvain clustering	15m5s	1.95	476x
Leiden clustering	51m1s	1.4s	2186x
Ind-to-end runtime	3hr31m48s	8m22s	25x
End-to-end cost	\$6.682	\$0.553	

GTC session - Deep Learning and Accelerated Computing for Single-Cell Genomic Data [S32511] Tutorial jupyter notebooks - https://github.com/NVIDIA-Genomics-Research/rapids-single-cell-examples

UMAP1

NVIDIA NGC RAPIDS Container https://ngc.nvidia.com

INSTALLATION

RAPIDS Release Selector (conda, container, source) https://rapids.ai

RAPIDS RELEASE SELECTOR

RAPIDS is available as conda packages, docker images, and from source builds. Use the tool below to select your preferred meth environment to install RAPIDS. Certain combinations may not be possible and are dimmed automatically. Be sure you've met the r above and see the details below.

Available on Minerva! Prebuilt RAPIDS modules

od, packages, and equired <mark>prerequisites</mark>
>
cuxfilter
HEL 7&8 🗢
5

Custom GPU Kernels with Numba

Just-in-time compiler

Numba is a JIT compiler for Python functions that you specify. Numba targets both CPU and GPU.

Numba provides the Python programmer a simple way to write customizable GPU accelerated code without needing CUDA C/C++

WHAT IS NUMBA? WHEN DO WE USE IT? Lower-level CUDA kernel development without leaving Python

Opt-in

Numba only compiles functions you specify. You don't need to compile the full program

PyData ecosystem

While not all functions in python can be compiled with Numba, the PyData ecosystem is well covered.

NUMBA VECTORIZE NumPy ufuncs operate on data in element-by-element order, and Numba vectorize allows us to accelerate those

```
from numba import vectorize
import numpy as np
import time
@vectorize
def rel diff(x, y):
    return 2 * (x - y) / (x + y)
```


types of operations

- 10000000]
- numpy times = [] numba times = []
- for size in size list:
 - 2 * (x y) / (x + y)
 - rel_diff(x, y)

With this "vectorized" Numba function we see improved performance as we increase our input size, making this solution ideal for large problem sizes.

```
size list = [1000, 10000, 100000, 1000000, 10000000,
    x=np.random.randn(size).astype(np.float32) + 1
    y=np.random.randn(size).astype(np.float32) + 1.1
    # Run baseline Numpy implementation
    # Run our vectorized Numba function
```


BEFORE

```
import numba
@jit()
def vector add(arr1, arr2):
    arr size = arr1.shape[0]
    result = np.empty(size=(arr size))
    for i in prange(arr size):
        result[i] = arr1[i] + arr2[i]
    return result
```

- Initialize data or copy data to GPU
- Lower-level support for custom CUDA kernels without C/C++
- JIT compiled kernels for fast execution
- Move data between DL frameworks, RAPIDS, and Numba

NUMBA CUDA

Lower-level CUDA kernel development without leaving Python

import numba @cuda.jit() def vector add(arr1, arr2, result): startx = cuda.grid(1) stridex = cuda.gridsize(1) arr size = arr1.shape[0] for i in range(startx, arr size, stridex): result[i] = arr1[i] + arr2[i]

AFTER

Function

Data handling

Machine learning

Function

Numerical Compu JIT Kernels

	CPU
	pandas
	scikit-learn
	CPU
uting	CPU NumPy

GPU/RAPID	S
cuDF	
cuML	
GPU	
CuPy	
Numba	

RAPIDS

FUNDAMENTALS

Accelerating End-to-End Data Science Workflows

6 hours | \$90 | Rapids, cuDF, cuML, cuGraph, Apache Arrow

Certificate Available

View Course >

NVIDIA DEEP LEARNING INSTITUTE

Self-paced courses

Instructor-led workshops

Numba

Fundamentals of Accelerated **Computing with CUDA Python**

+ POPULAR

8 hours | \$90 | CUDA , Python, Numba, NumPy

SESSIONS AT PREVIOUS GTC SEARCH ON NVIDIA ON DEMAND

If you found this content useful, please consider tuning into these sessions too: GPU-accelerated Feature Extraction and Image Similarity in Pure Python [S41661] Enabling Python User-Defined Functions in Accelerated Applications with Numba [S41056] No More Porting: Coding for GPUs with Standard C++, Fortran, and Python [S41496] Shifting through the Gears of GPU Programming: Understanding Performance and Portability Trade-offs [S41620] Evaluating Your Options for Accelerated Numerical Computing in Pure Python

nvidia. ML FRAMEWORKS INTEROPERABILITY

FRAMEWORK INTEROPERABILITY When a single framework is not enough

MIX AND MATCH WORKFLOWS Use the right tool, for the right job, in the right way

GPU zero-copyCopy & convert

MITIGATE DATA CONVERSION BOTTLENECK

DLPack is an open in-memory tensor structure which enables:

- Easier sharing of tensors and operators between deep learning frameworks.
- Easier wrapping of vendor level operator implementations, allowing collaboration when introducing new devices/ops.
- Quick swapping of backend implementations, like different version of BLAS.
- For final users, this could bring more operators, and possibility of mixing usage between frameworks.

DLPACK Sharing tensors the easiest way

From cuDF to CuPy

print(type(dst), "\n", dst)

[[1 3] [2 4]]

From CuPy to PyTorch

Convert a cuDF DataFrame to a CuPy ndarray src = cudf.DataFrame({'x': [1, 2], 'y': [3, 4]}) dst = cp.fromDlpack(src.to_dlpack())

<class 'cupy.core.core.ndarray'>

```
# Convert a CuPy ndarray to a PyTorch Tensor
src = cp.array([[1, 2], [3, 4]])
dst = torch.utils.dlpack.from_dlpack(src.toDlpack())
```

print(type(dst), "\n", dst)

```
<class 'torch.Tensor'>
tensor([[1, 2],
        [3, 4]], device='cuda:0')
```


- the following entries:
- shape: (integer, ...)
- A tuple of int (or long) representing the size of each dimension.
- typestr: str
- data: (integer, boolean)
- element is the read-only flag as a Python bool.
- version: integer

CUDA ARRAY INTERFACE 3.0 Seamless Ingestion

The <u>cuda_array_interface</u> attribute returns a dictionary (dict) that must contain

The type string. This has the same definition as typestr in the numpy array interface.

The data is a 2-tuple. The first element is the data pointer as a Python int (or long). The data must be device-accessible. For zero-size arrays, use 0 here. The second

An integer for the version of the interface being exported. The current version is 3.

			NumPy	CUDA
	DLF	ack	Array	Array
			Interface	Interface
	CPU	GPU	CPU	GPU
Pandas	X	n/a	\checkmark	n/a
NumPy	X	n/a	~	n/a
cuDF	n/a	\checkmark	n/a	\checkmark
CuPy	n/a	\checkmark	n/a	\checkmark
JAX	\checkmark	\checkmark	~	\checkmark
Numba	X	X	~	\checkmark
TensorFlow	\checkmark	\checkmark	~	X
PyTorch	\checkmark	\checkmark	~	\checkmark
MXNet	\checkmark	\checkmark	\checkmark	X

DLPACK & CUDA ARRAY INTERFACE

CUDA Array Interface adopted by:

- Numba
- CuPy
- PyTorch PyArrov \bullet
- mpi4py ArrayVi
- JAX

£	 PyCUDA
	• DALI
:h	RAPIDS
W	 cuDF
У	• cuML
liews	 cuSignal
	• RMM

Complex workloads make use of multiple libraries. Interoperability via DLPack and CUDA Array Interface (CAI).

Zero-copy and no data conversion is the goal. Not always possible, yet.

Summary

ZERO-COPY END-TO-END PIPELINE **Unsupervised outlier detection**

What we have:

- series as CSV on disk.
- What we are doing:
 - into ~ 100k heartbeats.
 - outlier detection.
 - generated heartbeats.

Disclaimer Technical example pipeline demonstrating framework interoperability. Not suitable for production in medical environments.

- 20 hours stream of continuously measured electrocardiogram (ECG) data. - Univariate and uniformly sampled time

- Unsupervised segmentation of ECG stream

- Training of Variational Autoencoder (VAE) for

- Visualization of the latent space &

RAPIDS cuDF

1	data
2	1.386300000000000088e+
3	1.7349000000000000000000000000000000000000
4	2.186500000000000110e+
5	2.747199999999999864e+
6	3.7519000000000000013e+
7	5.023100000000000342e+
8	6.478500000000000369e+
9	8.0025999999999999270e+
10	9.492100000000000648e+
11	1.0825400000000000013e+
12	1.186769999999999925e+
13	1.2486800000000000057e+
14	1.258730000000000082e+
15	1.21428999999999999914e+

END-TO-END PIPELINE Parse ECG from CSV

CuPy

Numba

cudf.io.csv.read_csv(filepath_or_buffer, lineterminator='\n', quotechar='", quoting=0, doublequote=True, header='infer', mangle_dupe_cols=True, usecols=None, sep=',', delimiter=None, delim_whitespace=False, skipinitialspace=False, names=None, dtype=None, skipfooter=0, skiprows=0, dayfirst=False, compression='infer', thousands=None, decimal='.', true_values=None, false_values=None, nrows=None, byte_range=None, skip_blank_lines=True, parse_dates=None, comment=None, na_values=None, keep_default_na=True, na_filter=True, prefix=None, index_col=None, **kwargs)

Load a comma-separated-values (CSV) dataset into a DataFrame

END-TO-END PIPELINE **Band-Pass Filter**

END-TO-END PIPELINE Non-trivial Preprocessing

END-TO-END PIPELINE Variational Autoencoder (VAE)

RAPIDS cuxfilter PyTorch

p(x | z)

END-TO-END PIPELINE Visualization

RAPIDS cuDF

Pandas

RAPIDS cuDF

Pandas

MIX AND MATCH WORKFLOWS Endless possibilities!

And many others!

ADDITIONAL RESOURCE

Tech blog & GTC session

GTC SESSIONS ON DATA SCIENCE

NVIDIA On Demand - Latest Data Science playlist

The Conference for the Era of Al

March 18-21, 2024 | San Jose, CA & Virtual

HUIWEN JU - HJU@NVIDIA.COM - SOLUTIONS ARCHITECT, HIGHER EDUCATION & RESEARCH 4/17/2024 @ MOUNT SINAI

DVIDA_®

