
Load Sharing Facility (LSF)
Minerva Scientific Computing Environment

https://labs.icahn.mssm.edu/minervalab

Patricia Kovatch
Lili Gai, PhD
Eugene Fluder, PhD
Hyung Min Cho, PhD
Wei Guo, PhD
Wayne Westerhold, MS
Jason Bowen

22 Sep 2021

Outline

▶ LSF introduction and basic/helpful LSF commands

▶ Dependent job

▶ Self-scheduler

▶ Parallel jobs: job arrays, parallel processing and GPUs

▶ Job checkpoint/restart

▶ Tips for efficient usage of the queuing system

2

Distributed Resource Management System (DRMS)

▶ Used to optimize utilization of resources and maximize throughput for
high-performance cluster computing systems

▶ Controls
– CPU cycles;
– Memory;
– Specialty resources

▶ Widely deployed DRMSs
– IBM Spectrum Load Sharing Facility (LSF)
– Portable Batch Systems (PBS)
– Simple Linux Utility for Resource Management (Slurm)
– others such as IBM Load Leveler and Condor

3

LSF Job Lifecycle

1. submit a job

2. schedule the job

3. dispatch the job

4

https://www.ibm.com/

4. run the job

5. return output/record stats

6.send Email to client
(disabled on Minerva)

LSF: batch job submission: bsub

Batch jobs submission:
simple standard job submission

bsub [options] command

$ bsub -P acc_hpcstaff -q premium-n 1 -W 00:10 echo “Hello World”

simple LSF script submission

bsub [options] < pathToScript

$ bsub -q premium-n 1 -W 00:10 < helloWorld.lsf

where helloWorld.lsf is:

#BSUB -P acc_hpcstaff

#BSUB -q express

echo “salve mundi”

Execution environment:
Shell is your current shell (can change with -L)
Working directory on execution host is same as on submission host
Environment variables are copied over (aliases are not)

 ...
5

LSF: batch job submission: bsub
Major options:

▶ -P accountName - Of the form: acc_projectName

▶ -q queuename - submission queue
▶ -W wallClockTime - in form of HH:MM
▶ -n ncpu - number of cpu’s requested (default: 1)
▶ -R rusage[mem=#MB] - amount of real memory per “-n” in MB

– max memory per node:160GiB (compute), 326GB (GPU), 1.4TiB (himem)
▶ -R span[#-n’s per physical node]

– span[ptile=4] - 4 cores per node/host
– span[hosts=1] - all cores on same node/host

▶ -R himem - Request high memory node

6

To see the list of accessible project accounts:
$ mybalance
 User_ID Project_name BODE

 ------- --------------- -------
 choh07 acc_hpcstaff Yes
 choh07 acc_DGXTrial No

LSF: bsub major options

▶ -o Name of output file (concatenated)
▶ -oo Name of output file (overwrite)
▶ -e Name of error file (concatenated)
▶ -eo Name of error file (overwrite)

NOTE: Default output is mailed to the user BUT since we have disabled
mail response, it goes into the bit bucket.

If -o(o) is specified but not -e, error is appended to output file

7

bsub - submit a job to LSF (interactive and batch)
Interactive jobs:

● Set up an interactive environment on compute nodes with internet access
● Useful for testing and debugging jobs
● Interactive GPU is available for job testing

8

bsub -XF -P acc_hpcstaff -q interactive -n 1 -W 2:00 -R rusage[mem=3000]
-Is /bin/bash
● -q : to specify the queue-name from where to get the nodes
● -Is: Interactive terminal/shell
● -n : to specify the total number of compute cores (job slot) needed
● -R : Resource request specifying in a compute node
● -XF: X11 forwarding
● /bin/bash : the shell to use

gail01@li03c03: ~ $ bsub -XF -P acc_hpcstaff -q interactive -n 1 -W 2:00 -R rusage[mem=3000]
-Is /bin/bash
Job <2916837> is submitted to queue <interactive>.
<<ssh X11 forwarding job>>
<<Waiting for dispatch ...>>
<<Starting on lc02a29>>

BSUB Official Reference

https://www.ibm.com/docs/en/spectrum-lsf/10.1.0?topic=reference-bsub

9

bjobs - status of jobs
● Check your own jobs: $bjobs

● Check all jobs: $bjobs -u all

● Long format with option -l

10

JOBID USER JOB_NAME STAT QUEUE FROM_HOST EXEC_HOST SUBMIT_TIME START_TIME

TIME_LEFT

 2845103 beckmn01 *>junkK.432 RUN premium regen2 lc02e24 Sep 9 21:19 Sep 10 14:25 23:57 L
 2845113 beckmn01 *>junkK.442 RUN premium regen2 lc02e24 Sep 9 21:19 Sep 10 14:26 23:58 L
 2845088 beckmn01 *>junkK.417 RUN premium regen2 lc04a10 Sep 9 21:18 Sep 10 14:23 23:55 L
 2845089 beckmn01 *>junkK.418 RUN premium regen2 lc04a10 Sep 9 21:18 Sep 10 14:23 23:55 L
 2845090 beckmn01 *>junkK.419 RUN premium regen2 lc04a10 Sep 9 21:18 Sep 10 14:23 23:55 L
 2845091 beckmn01 *>junkK.420 RUN premium regen2 lc04a10 Sep 9 21:18 Sep 10 14:23 23:55 L
 2845092 beckmn01 *>junkK.421 RUN premium regen2 lc04a10 Sep 9 21:18 Sep 10 14:23 23:55 L
 2845093 beckmn01 *>junkK.422 RUN premium regen2 lc04a10 Sep 9 21:18 Sep 10 14:23 23:55 L
 ……...

gail01@li03c03: ~ $ bjobs
 JOBID USER JOB_NAME STAT QUEUE FROM_HOST EXEC_HOST SUBMIT_TIME START_TIME
TIME_LEFT
 2937044 gail01 myfirstjob PEND premium li03c03 - Sep 10 14:38 - -

LSF Useful Commands
bhosts: Displays hosts and their static and dynamic resources

● List all the compute nodes on Minerva

11

HOST_NAME STATUS JL/U MAX NJOBS RUN SSUSP USUSP RSV
filizm02-3 ok - 24 1 1 0 0 0
lc01a05 closed - 48 48 48 0 0 0
lc01a07 closed - 48 48 16 0 0 32
lc04a19 unavail - 48 0 0 0 0 0
lg03a01 ok - 32 0 0 0 0 0
lg03a02 ok - 32 17 17 0 0 0
lh03c03 closed - 48 48 48 0 0 0

bhosts: himem, gpu, bode, nonbode (major nodes), interactive

12

13

bhosts: himem, gpu, bode, nonbode (major nodes), interactive

nonbode and himem are usually quite busy, while bode and interactive are
usually open to jobs in minutes; Availability of gpu queue varies from time to
time

bqueues: displays information about all the available queues

14

bqueues -l interactive
QUEUE: interactive
 -- For interactive jobs
PARAMETERS/STATISTICS
PRIO NICE STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SSUSP USUSP RSV
100 0 Open:Active - - - - 4 0 4 0 0 0
Interval for a host to accept two jobs is 0 seconds
DEFAULT LIMITS:
 RUNLIMIT
 120.0 min
MAXIMUM LIMITS:
 RUNLIMIT
 720.0 min
…….
USERS: all
HOSTS: interactive/

15

LSF: Queue structure (bqueues)

Queue structure in Minerva

Queue Wall time limit available resources

interactive
(Dedicated to interactive jobs)

12 hours 4 nodes+1 GPU node

premium 6 days 270 nodes + 37 himem nodes

express 12 hours 270 nodes+ 4 dedicated nodes (may change)

long 2 weeks 4 dedicated (192 cores)

gpu 6 days 44 V100
32 A100

private unlimited private nodes

*default memory : 3000MB / per core

bmod - modify submission options of pending jobs
bmod takes similar options to bsub

● bmod -R rusage[mem=20000] <jobID>
○ -R replaces ALL R fields not just the one you specify

● bmod -q express <jobID>

16

bpeek <jobID>

bpeek - display output of the job produced so far

gail01@li03c03: ~ $ bpeek 2937044
<< output from stdout >>
“Hello Chimera”

<< output from stderr >>

gail01@li03c03: ~ $ bmod -q express 2937044
Parameters of job <2937044> are being changed

bkill - kill jobs in the queue

Lots of ways to get away with murder

bkill <job ID>

Kill by job id
bkill 765814

Kill by job name
bkill -J myjob_1

Kill a bunch of jobs
bkill -J myjob_*

Kill all your jobs
bkill 0

17

bhist - historical information

18

Common errors of batch jobs

1. Valid allocation account needed in the submission script
-=-
 Project acc_project is not valid for user gail01
-=-
Request aborted by esub. Job not submitted.

● $mybalance (note BODE eligible)
gail01@li03c03: ~ $ mybalance

User_ID Project_name BODE

 ------- --------------- ------------

 gail01 acc_hpcstaff Yes

 gail01 acc_DGXTrial No

2. Reach memory limit

 bhist -n 10 -l 107992756

● memory based on one core, with 3000MB as default
● multithreaded applications need to be on the same node, such as STAR, BWA

19

Fri Jul 27 11:07:33: Completed <exit>; TERM_MEMLIMIT: job killed after
 reaching LSF memory usage limit;

Wrapper script: LSFqueue module

▶ We have installed a wrapper script authored by Harm van Bakel, which will
make it easier to interact with the LSF job scheduler on Minerva, per user
request

To load them up, $ml LSFqueue

To get more info on the module, $module help LSFqueue; And a detailed
readme file at

/hpc/packages/minerva-centos7/LSFqueue/1.0/README.txt

20

Dependent Job

Any job can be dependent on other LSF jobs.
Syntax
bsub -w 'dependency_expression'
usually based on the job states of preceding jobs.

bsub -J myJ < myjob.lsf

bsub -w 'done(myJ)' < dependent.lsf

21

Self-scheduler
● Submit large numbers of independent serial jobs as a single batch

○ It is mandatory for short batch jobs less than ca. 10 minutes
○ These jobs put heavy load on the LSF server and will be killed

22

#!/bin/bash

#BSUB -q express

#BSUB -W 00:20

#BSUB -n 12

#BSUB -J selfsched

#BSUB -o test01

module load selfsched # load the selfsched module

mpirun -np 12 selfsched < test.inp # 12 cores, with one master process

$PrepINP < templ.txt > test.inp (InputForSelfScheduler)
$cat templ.txt
1 10000 2 F ← start, end, stride, fixed field length?
/my/bin/path/executable < my_input_parameters_# > output_#.log

$cat test.inp (a series of job command)
/my/bin/path/executable < my_input_parameters_1 > output_1.log

/my/bin/path/executable < my_input_parameters_3 > output_3.log
.

/my/bin/path/executable < my_input_parameters_9999 > output_9999.log

Job submission script example: selfsched.lsf
#!/bin/bash
#BSUB -J myMPIjob # Job name
#BSUB -P acc_bsr3101 # allocation account
#BSUB -q express # queue
#BSUB -n 64 # number of compute cores
#BSUB -R span[ptile=4] # 4 cores per node
#BSUB -R rusage[mem=4000] # 256 GB of memory (4 GB per core)
#BSUB -W 00:20 # walltime (30 min.)
#BSUB -o %J.stdout # output log (%J : JobID)
#BSUB -eo %J.stderr # error log
#BSUB -L /bin/bash # Initialize the execution environment

echo "Job ID : $LSB_JOBID"
echo "Job Execution Host : $LSB_HOSTS"
echo "Job Sub. Directory : $LS_SUBCWD"

module load python
module load selfsched
mpirun -np 64 selfsched < JobMixPrep.inp > JonMixPrep.out

23

Parallel Job

● Array job: Parallel analysis for multiple instances of the same program
○ Execute on multiple data files simultaneously
○ Each instance running independently

● Distributed memory program: Message passing between processes (e.g.
MPI) Map-reduce(e.g. Spark)
○ Processes execute across multiple CPU cores or nodes

● Shared memory program (SMP): multi-threaded execution (e.g. OpenMP)
○ Running across multiple CPU cores on same node

● GPU programs: offloading to the device via CUDA

24

Array Job
● Groups of jobs with the same executable and resource requirements, but

different input files.
○ -J “Jobname[index | start-end:increment]”
○ Range of job index is 1~ 10,000

○ LSB_JOBINDEX is set to array index

25

gail01@li03c03 $ bsub < myarrayjob.sh
Job <2946012> is submitted to queue <express>.
gail01@li03c03: ~ $ bjobs
 JOBID USER JOB_NAME STAT QUEUE FROM_HOST EXEC_HOST
SUBMIT_TIME START_TIME TIME_LEFT
 2946012 gail01 *rraytest[1] PEND express li03c03 - Sep 10 14:50 - -
 2946012 gail01 *rraytest[2] PEND express li03c03 - Sep 10 14:50 - -
 2946012 gail01 *rraytest[3] PEND express li03c03 - Sep 10 14:50 - -
 2946012 gail01 *rraytest[4] PEND express li03c03 - Sep 10 14:50 - -
 2946012 gail01 *rraytest[5] PEND express li03c03 - Sep 10 14:50 - -
 2946012 gail01 *rraytest[6] PEND express li03c03 - Sep 10 14:50 - -
 2946012 gail01 *rraytest[7] PEND express li03c03 - Sep 10 14:50 - -
 2946012 gail01 *rraytest[8] PEND express li03c03 - Sep 10 14:50 - -
 2946012 gail01 *rraytest[9] PEND express li03c03 - Sep 10 14:50 - -
 2946012 gail01 *raytest[10] PEND express li03c03 - Sep 10 14:50 - -

#!/bin/bash
#BSUB -P acc_hpcstaff
#BSUB -n 1
#BSUB -W 02:00
#BSUB -q express
#BSUB -J "jobarraytest[1-10]"
#BSUB -o logs/out.%J.%I
#BSUB -e logs/err.%J.%I
echo “Working on file.$LSB_JOBINDEX”

Message Passing Interface (MPI) Jobs

● This example requests 48 cores and 2 hours in the "express” queue.
○ Those 48 cores can be dispatched across multiple nodes

26

#!/bin/bash
#BSUB -J myjobMPI
#BSUB -P acc_hpcstaff
#BSUB -q express
#BSUB -n 48
#BSUB -R span[ptile=8]

#BSUB -W 02:00
#BSUB -o %J.stdout
#BSUB -eo %J.stderr
#BSUB -L /bin/bash

cd $LS_SUBCWD

module load openmpi

mpirun -np 48 /my/bin/executable < my_data.in

Apache Spark Jobs

● Use lsf-spark-submit.sh to launch job. See
https://www.ibm.com/docs/en/spectrum-lsf/10.1.0?topic=lsf-apache-spark
for full details

27

#!/bin/bash
#BSUB -J myjobSpark
#BSUB -P acc_hpcstaff
#BSUB -q express
#BSUB -n 48
#BSUB -W 02:00
#BSUB -o %J.stdout
#BSUB -eo %J.stderr
#BSUB -L /bin/bash

ml spark

lsf-spark-submit.sh --class "SimpleApp" target/scala-2.10/simple-project_2.10-1.0.jar
../myfile.txt

https://www.ibm.com/docs/en/spectrum-lsf/10.1.0?topic=lsf-apache-spark

Multithreaded Jobs - OpenMP
● Multiple CPU cores within one node using shared memory

○ In general, a multithreaded application uses a single process which then
spawns multiple threads of execution

○ It’s highly recommended the number of threads is set to the number of
compute cores

● Your program needs to be written to use multi-threading

28

#!/bin/bash
#BSUB -J myjob
#BSUB -P YourAllocationAccount
#BSUB -q express
#BSUB -n 4
#BSUB -R "span[hosts=1]”
#BSUB -R rusage[mem=12000]
#BSUB -W 01:00
#BSUB -o %J.stdout
#BSUB -eo %J.stderr
#BSUB -L /bin/bash

cd $LS_SUBCWD
export OMP_NUM_THREADS=4 #sets the number of threads
/my/bin/executable < my_data.in

Job submission script example: star.lsf
#!/bin/bash
#BSUB -J mySTARjob # Job name
#BSUB -P acc_PLK2 # allocation account
#BSUB -q premium # queue
#BSUB -n 8 # number of compute cores
#BSUB -W 12:00 # walltime in HH:MM
#BSUB -R rusage[mem=4000] # 32 GB of memory (4 GB per core)
#BSUB -R span[hosts=1] # all cores from one node
#BSUB -o %J.stdout # output log (%J : JobID)
#BSUB -eo %J.stderr # error log
#BSUB -L /bin/bash # Initialize the execution environment

module load star
WRKDIR=/sc/orga/projects/hpcstaff/benchmark_star
STAR --genomeDir $WRKDIR/star-genome --readFilesIn Experiment1.fastq --runThreadN 8
--outFileNamePrefix Experiment1Star

29

Submit the script with the bsub command:

bsub < star.lsf

Specifying a resource - OpenMP job

30

Span: define the shape of the slots you ask for:

-n 12 -R span[hosts=1] - allocate all 12 cores to one host

-n 12 -R span[ptile=12] - all 12 slots/cores must be on 1 node

-n 24 -R span[ptile=12] - allocate 12 cores per node = 2 nodes

OMP_NUM_THREADS must be set in script:
● bsub -n 12 -R span[hosts=1] < my_parallel_job

export OMP_NUM_THREADS=12

● bsub -n 12 -R span[ptile=12] -a openmp < my_parallel_job

LSF sets it for you as number of procs per node

● bsub -n 1 -R “affinity[core(12)]” -R “rusage[mem=12000]” -a openmp

< my_parallel_job

○ 1 job slot with 12 cores, 12000MB memory to that job slot...not per core

○ Advantage: Can vary number of cores and/or memory without making any
other changes or calculations

A Bravura Submission - Mixing it all together

Suppose you want to run a combined MPI-openMP job. One mpi process
per node, openMP in each MPI Rank:

bsub -n 20 -R span[ptile=1] -R affinity[core(8)] -a openmp < my_awsome_job

ptile=1 - one slot on each node

core(8) - 8 cores per job slot

openmp - will set OMP_NUM_THREADS on each node to 8

31

GPGPU (General Purpose Graphics Processor Unit)
● GPGPU resources on Minerva

○ Interactive queue (1 GPU node)

○ gpu queue for batch (18 GPU nodes)

■ Can be quite busy sometimes

32

#BSUB -q gpu
#BSUB -n Ncpu

#BSUB -R v100
#BSUB -R span[hosts=1]
#BSUB -R "rusage[ngpus_excl_p=2]"

module purge
module load anaconda3 (or 2)
module load cuda
source activate tfGPU

python -c "import tensorflow as tf"

submit to gpu queue
Ncpu is 1~32 on v100

request specified gpu node v100
request all gpu card on the same node
The number of GPUs requested per node (1 by
default)

to access tensorflow
to access the drivers and supporting
subroutines

V100 A100

number of nodes 10 8

GPU card 4 V100 4 A100

CPU cores 32 48

host memory 384GB 384GB

GPU memory 16 GB 40GB

GPGPU (continue)
● LSF will set CUDA_VISIBLE_DEVICES to the list of GPU cards assigned

to the job. E.g: 2,1,3 Most standard packages honor these assignments
○ DO NOT MANUALLY CHANGE THE VALUE OF

CUDA_VISIBLE_DEVICES.
● Multiple GPU cards can be requested across different GPU nodes

33

#BSUB -q gpu
#BSUB -n 8
#BSUB -R span[ptile=2]
#BSUB -R v100
#BSUB -R rusage[ngpus_excl_p=2]

submit to gpu queue
8 compute cores requested
2 cores per node, so 4 nodes in total requested
request specified gpu node v100
2 GPUs requested per node

Note that 2 GPU cards will be reserved on each of 4 nodes for your job. If your
job cannot /does not run in distributed mode, you will still lock these resources
on the nodes that you are not using and prevent others from being dispatched
to those node.

CUDA_VISIBLE_DEVICES may be defined differently on each of the nodes
allocated to your job.

GPGPU - SSD

The newer a100 nodes also have a 1.8TB SSD. Use the ssd_gb resource to
request the amount of free space required by your job:

34

#BSUB -q gpu

#BSUB -R span[hosts=1]
#BSUB -R rusage[ngpus_excl_p=2]

#BSUB -R ssd_gb=1000

Checkpoint/Restart
https://hpc.mssm.com->Minerva Documentation->Checkpoint-Restart

▶ Checkpoint: Save the state of a process at a particular point in the
computation

▶ Restart: Restore the state of a process and continue the computation from
the saved state.

35

https://hpc.mssm.com

Checkpoint/Restart

▶ The long-time standard BLCR method is no longer supported
▶ It has been replaced by the more modern method: Checkpoint/Restart In

User space (CRIU)

36

bsub -k "checkpoint_dir [init=initial_checkpoint_period]
[check‐point_period] [method=method_name]"

E.g.,

bsub -k "chkpntDir init=10 90 method=criu"
More details at
https://labs.icahn.mssm.edu/minervalab/documentation/checkpoint-restart/

https://labs.icahn.mssm.edu/minervalab/documentation/checkpoint-restart/

Checkpoint/Restart
https://hpc.mssm.com->Minerva Documentation->Checkpoint-Restart

▶ To restart, use brestart command
▶ Must restart on same type of machine.
▶ Can increase memory, change queue, add dependency, etc (see man

page)

37

brestart [options] checkpointFolder jobid
brestart -W 4:00 -R rusage[mem=26000] chkpnt 193876

BONUS: You may be able to checkpoint a process
even if you didn’t set it up via LSF.

See HPC web site for details.

https://hpc.mssm.com

Tips for efficient usage of the queuing system
● User limitation

○ Max pending job per user: 20,000
○ Heavy users: depending on the resource requested

● Find appropriate queue and nodes
○ use -q interactive: for debug (both CPU and GPU with internet access)
○ use -q express if walltime < 12h
○ use himem node for memory intensive job

● Request reasonable resource
○ Prior knowledge needed (run test program and use top or others to monitor)
○ Keep it simple

● Job not start after a long pending time
○ Whether the resource requested is non-exist: -R rusage[mem = 10000] -n 20
○ Run into PM:

● If you see memory not enough
○ Think about shared memory vs distributed memory job………
○ Use -R span[hosts=1] where needed 38

 NOTE: Because of PM reservations, job may not run
 until after Sat 21 Mar at 8:00PM
-=-
Job <6628109> is submitted to queue <premium>.

Final Friendly Reminder
● Never run jobs on login nodes

○ For file management, coding, compilation, etc., purposes only
● Never run jobs outside LSF

○ Fair sharing
○ Scratch disk not backed up, efficient use of limited resources
○ Job temporary dir configured to /local/JOBS instead of /tmp.

● Logging onto compute nodes is no longer allowed

● Follow us by visiting https://labs.icahn.mssm.edu/minervalab , weekly
update and twitter

● Acknowledge Scientific Computing at Mount Sinai should appear in your
publications

○ This work was supported in part through the computational resources and staff expertise
provided by Scientific Computing at the Icahn School of Medicine at Mount Sinai.

○ If you are using BODE: “Research reported in this paper was supported by the Office of
Research Infrastructure of the National Institutes of Health under award numbers
S10OD026880. The content is solely the responsibility of the authors and does not
necessarily represent the official views of the National Institutes of Health.

39

https://labs.icahn.mssm.edu/minervalab

Last but not Least

▶ Got a problem? Need a program installed? Send an email to:

hpchelp@hpc.mssm.edu

40

