Introduction to Minerva

Minerva Scientific Computing Environment

https://labs.icahn.mssm.edu/minervalab

Patricia Kovatch Eugene Fluder, PhD Hyung Min Cho, PhD Lili Gai, PhD Dansha Jiang, PhD

March 11, 2020

Outlines

- Minerva compute and storage resources
- Minerva account and logging in
- User software environment
- File transfer, web server and data archive
- Preview on basic LSF commands

Minerva cluster @ Mount Sinai

Chimera Computes:

- 4x login nodes Intel Skylake 8168 24C, 2.7GHz 384 GB memory
- 274 compute nodes Intel 8168 24C, 2.7GHz
 - 13,152 cores (48 per node (2 sockets/node) 192 GB/node)
- 4x high memory nodes Intel 8168 24C, 2.7GHz 1.5 TB memory
- 48 V100 GPUs in 12 nodes Intel 6142 16C, 2.6GHz 384 GB memory 4x V100-16 GB GPU

BODE2 Computes:

- \$2M S10 BODE2 awarded by NIH (Kovatch PI)
- 78 compute nodes Intel 8268, 2.9 GHz
 - 3,744 cores (48 cores per node 192 GB/node)
 - Open to all NIH funded projects

Storage:

Total number of storage space: ~22PB usable in total

- /sc/hydra: new file system on Minerva as primary storage
 - Have the same folders as /sc/orga (work, projects, scratch).
 - Use the system path environment variable in scripts
- /sc/orga is still mounted on Minerva
 - Will be merged to hydra.
- /sc/arion will be available soon (10 petabytes of usable storage from BODE2)

Minerva

Minerva nodes and infrastructure fully refreshed 2019

Logging in - General

Minerva is a Linux machine with Centos 7.6

- Linux is command line based, not GUI
- Linux was developed using TTY devices. Commands are short and many times cryptic, but there is usually a good reason

Logging in require an SSH client installed on your machine, a username, a memorized password, and a one-time use code obtained from a physical/software token

- SSH client: terminal (Mac), Putty or MobaXterm (Windows)
- Apply for an account at https://acctreq.hpc.mssm.edu/
- Register your token at the Self Service Portal (https://register4vip.mssm.edu/vipssp/)
- Logging info at https://labs.icahn.mssm.edu/minervalab/logging-in/

Logging in - Linux / Mac

Connect to Minerva via ssh:

- ssh your_userID@minerva.hpc.mssm.edu
- To display graphics remotely on your screen, pass the "-X" or "-Y" flag:
 - ssh -X your userID@minerva.hpc.mssm.edu
 - Mac: Install XQuartz on your mac first
- Open a terminal window on your workstation(Linux/Mac)
 - Landed on one of the login nodes, and at your home directory
 - Never run jobs on login nodes
 - For file management, coding, compilation, etc., purposes only

Logging in - Windows

- Install MobaXterm from https://mobaxterm.mobatek.net/
 - Enhanced terminal for Windows with X11 server, tabbed SSH client, network tools and much more

OR

- Install PuTTY from www.putty.org
 - Google it. It will be the first hit.
 - https://www.youtube.com/watch?v=ma6Ln30iP08
- If you are going to be using GUI's
 - In Putty: Connection > SSH > X11
 - Ensure "Enable X11 forwarding" is selected
 - On Windows box install Xming
 - Google; Download; Follow bouncing ball
 - Test by logging into Minerva and run the command: xclock
 - Should see a clock

Minerva Login summary

4 new login nodes: minerva[11-14], which points to the login node li03c[01-04]

- minerva[11-12] (or li03c[01-02]) are external login nodes
 - Public login nodes when you are off-campus
- minerva[13-14] (or li03c[03-04]) are internal login nodes
 - only available within campus-network

Users	Login method	Login servers	Password Components
Sinai users	user1	@minerva.hpc.mssm.edu	Sinai Password + 6 Digit Symantec VIP token code
External users	user1+yldap	@minerva11.hpc.mssm.edu @minerva12.hpc.mssm.edu	HPC Password + YubiKey Button Push (Will migrate to school VIP tokens)

Note: Load balancer **Round-robin** is configured for **minerva.hpc.mssm.edu**. It will distribute client connections to the nearest across a group of login nodes.

Minerva Storage

- Storage is in folders and subfolders. In linux, subfolders are separated by "/"
- 4-ish folders you can have (Possibly multiple project folders)

Home	/hpc/users/ <userid></userid>	 20GB quota. Slow. Use for "config" files, executablesNOT DATA NOT purged and is backed up
Work	/sc/hydra/work/ <userid></userid>	 100GB quota Fast, keep your personal data here NOT purged but is NOT backed up
Scratch	/sc/hydra/scratch/ <userid></userid>	 Free for all, shared wild west Current size is about 100TB Purge every 14 days and limit per user is 5TB
Project	/sc/hydra/projects/ <projectid> \$df -h /sc/hydra/projects/<projectid></projectid></projectid>	 Pl's can request project storage. Need to submit an allocation request and get approval from allocation committee https://hpc.mssm.edu/hpc-admin/forms/allocation-request (under upgrade) Not backed up Incurs charges \$107/TiB/yr

User Software Environment

OS: Centos 7.6 with glibc-2.17(GNU C library) available.

Some key packages:

GCC: system default /usr/bin/gcc is gcc 4.8.5

\$ module load gcc (default is 8.3.0)

Python: default version 3.7.3

\$ module load python (it will load python and all available python packages)

R: default version 3.5.3 (will update to 3.6.3 soon)

\$ module load R (it will load R and all available R packages)

Perl: default system version 5.16.3

\$module load CPAN

Anaconda3: default version 2018-12

\$module load anaconda3

schrodinger: 2019-1

\$module load schrodinger

Matlab access: \$module load matlab

 The cost for the license is \$100.00 per activation, and request form at https://mountsinai.formstack.com/forms/mathworksacademiclicense

User Software Environment: Lmod

Lmod Software Environment Module system implemented:

- Written in lua, but reads the TCL module files, and module command will all work
- Search for all possible module: \$ module avail or \$ module spider
 Check all available R versions

\$ ml spider R

......R/3.3.1, R/3.4.0-beta, R/3.4.0, R/3.4.1, R/3.4.3_p, R/3.4.3, R/3.5.0, R/3.5.1_p, R/3.5.1, R/3.5.2, R/3.5.3

```
gail01@li03c03: ~ $ ml python
gail01@li03c03: ~ $ ml

Currently Loaded Modules:
   1) gcc/8.3.0   2) python/3.7.3

gail01@li03c03: ~ $ ml python/2.7.16

The following have been reloaded with a version change:
   1) python/3.7.3 => python/2.7.16

gail01@li03c03: ~ $ ml -gcc
```

- Autocompletion with tab
- module save: Lmod provides a simple way to store the currently loaded modules and restore them later through named collections

User Software Environment: Lmod

Example

- > ml python bedtools gnuplot fftw
- > ml R python/2.7.16 -fftw
- > mI R/3.6.0
- > ml

Currently Loaded Modules:

1) zlib/1.2.8 4) gcc/8.3.0

- 7) gsl/2.5
- 10) R/3.5.3
- 2) bedtools/2.29.0 5) intel/parallel_studio_xe_2019 8) libpng/12
- 11) python/2.7.16

- 3) gnuplot/5.2.6 6) hdf5/1.10.5
- 9) java/1.8.0 211

- > ml save myenv1
- > ml purge
- > ml

No modules loaded

- > ml restore myenv1
- > ml savelist

Named collection list:

- 1) default 2) myenv1
- > ml disable myenv1

User Software Environment

Anaconda3:

Support minimal conda environments (such as tensorflow, pytorch, qiime)
 e.g., tensorflow (both in CPU and GPU)

\$module load anaconda3 (or anaconda2)

\$module load cuda

\$source activate tfGPU

- User should install their own envs locally,
 - → Use option -p PATH, --prefix PATH Full path to environment location (i.e. prefix).
 \$conda create python=3.x -p /sc/orga/hydra/gail01/conda/envs/myenv
 - → Set envs_dirs and pkgs_dirs in .condarc file, specify directories in which environments and packages are located

\$conda create -n myenv python=3.x

 Set conda base auto-activation false conda config --set auto_activate_base false \$ cat ~/.condarc file envs_dirs:

- /sc/hydra/work/gail01/conda/envspkgs_dirs:
- /sc/hydra/work/gail01/conda/pkgs

User Software Environment - some config

- You can load modules in your .bashrc script to load them on startup
- You can create your own modules and modify MODULEPATH so they can be found

export MODULEPATH=/hpc/users/fludee01/mymodules:\$MODULEPATH or

module use /hpc/users/fludee01/mymodules

Run applications by Containers: Singularity

Singularity tool is supported, instead of docker (Security concern)

Docker gives superuser privilege, thus is better at applications on VM or cloud infrastructure

To use singularity:

\$ module load singularity

To pull a singularity image:

\$ singularity pull --name hello.simg shub://vsoch/hello-world

To pull a docker image:

\$singularity pull docker://ubuntu:latest

To run a singularity image:

\$ singularity run hello.simg # or, \$./hello.simg

Note: /tmp and user home directory is automatically mounted into the singularity image. If you would like to **get a shell with hydra mounted** in the image, use command:

\$ singularity run -B /sc/hydra/project/xxx hello.simg

To build a new image from recipe files: use Singularity Hub or your local workstation

- Singularity build is not fully supported due to the sudo privileges for users
- After registering an account on Singularity Hub, you can pull or upload your recipe, trigger the singularity build and download the image after built.
- Convert docker recipe files to singularity recipe files:

\$ml python

\$spython recipe Dockerfile Singularity

Web server at https://users.hpc.mssm.edu/

New web server is up and under test currently

- Setting up python environment
- Address is https://users.hpc.mssm.edu/~userid/, for example: https://users.hpc.mssm.edu/~gail01/
- Will send announcement and more documentation on this

Step 1:

If this folder does not exist in your home directory, you should create it. \$ mkdir ~/www Step 2:

1) Place content in the www folder. \$ cat > ~/www/index.html <<EOF Hello World from my website.

EOF

2) put files or create symlink (from hydra) under the ~/www

WARNING WARNING: Be careful! Content, executables, scripts, symlinks, applications, etc. within the www/ folder may be (or are) publicly accessible. Scripts and applications launched via Apache in that folder run as your user! They can access any data (including your groups' /project data), delete data, archive data, submit jobs, cancel jobs, email people, etc., as your user. You are responsible for any actions taken on your behalf!

File Transfer

On Minerva: use login nodes (33h) or interactive nodes (12h).

Data transfer node will be available soon.

- Globus online (Preferred, when available):
 - Minerva Endpoint: mssm#minerva
 - More information at http://www.globusonline.org
 - Globus Connect Personal to make your laptop an endpoint
- SCP, SFTP, rsync:
 - Good for relatively small files, not hundreds of TB's
 - Some scp apps for Windows/Mac use cached password. This feature must be turned off.
- Physical Transport:
 - We do support the copying of physical hard drives on the behalf of users

Archiving Data: TSM Overview

- Keep for 6 years with two copies
- Can be accessed via either a GUI or the command line

```
$ module load java
$ dsmj -se=userid $ dsmc -se= userid
```

- Works only on internal login nodes, i.e., minerva13, minerva14; NOT on external login node (i.e., minerva11, minerva12)
- Large transfers can take a while. Use a screen session and disconnect to prevent time-outs
- Full more details at https://labs.icahn.mssm.edu/minervalab/archiving-data/
- Collaboration account:
 - If your group is in need of a collaboration account for group related tasks like archiving a project directory or managing group website, contact us at hpchelp@mssm.edu

For more info. see

https://labs.icahn.mssm.edu/minervalab/collaboration-account/

Load Sharing Facility(LSF)

A Distributed Resource Management System

Submit Batch Jobs via LSF on Minerva - bsub

- LSF job scripts are very much like bash shell scripts
- bsub options can be entered on command line and/or by placing #BSUB "cookies" in the submitted script

bsub [options] my_batch_job

This will submit the command script "my_batch_job" using the options on the command line. This will NOT interpret the #BSUB cookies in the script.

bsub [options] < my_batch_job, if the job script contains #BSUB cookies:

This will interpret the #BSUB cookies in the script. Options on the command line override what is in the script.

LSF: job submission examples

Interactive session:

```
# interactive session
$ bsub -P acc_hpcstaff -q interactive -n 1 -W 00:10 -Is /bin/bash
# interactive GPU nodes, flag "-R v100" is required
$ bsub -P acc_hpcstaff -q interactive -n 1 -R v100 -R rusage[ngpus_excl_p=1] -W 01:00 -Is /bin/bash
```

Batch jobs submission:

```
# simple standard job submission
$ bsub -P acc_hpcstaff -q premium-n 1 -W 00:10 echo "Hello World"

# GPU job submission if you don't mind the GPU card model
$ bsub -P acc_hpcstaff -q gpu -n 1 -R rusage[ngpus_excl_p=1] -W 00:10 echo "Hello World"

# himem job submission, flag "-R himem" is required

$ bsub -P acc_hpcstaff -q premium -n 1 -R himem -W 00:10 echo "Hello World"
```

To see the list of accessible project accounts:

```
$ mybalance
User_ID Project_name BODE
-----
choh07 acc_hpcstaff Yes
choh07 acc_DGXTrial No
```

LSF: batch job submission using a script

\$ cat star.lsf

```
#!/bin/bash
#BSUB -J mySTARjob
                                     # Job name
#BSUB -P acc hpcstaff
                                     # allocation account
#BSUB -q premium
                                     # queue
#BSUB -n 8
                                     # number of compute cores
#BSUB-W4:00
                                     # walltime in HH·MM
#BSUB -R rusage[mem=4000]
                                     # 32 GB of memory (4 GB per core)
#BSUB -R span[hosts=1]
                                     # all cores from the same node
#BSUB -o %J.stdout
                                     # output log (%J : JobID)
#BSUB -eo %J.stderr
                                     # error log
                                     # Initialize the execution environment
#BSUB -L /bin/bash
module load star
WRKDIR=/sc/hydra/projects/hpcstaff/benchmark star
STAR --genomeDir $WRKDIR/star-genome --readFilesIn Experiment1.fastq --runThreadN 8
--outFileNamePrefix Experiment1Star
```

\$ bsub -q express < star.lsf

Job <2937037> is submitted to queue <express>.

LSF: Queue structure in Chimera (bqueues)

Queue structure in Chimera				
Queue	Wall time limit	available resources		
interactive (Dedicated to interactive jobs)	12 hours	4 nodes+1 GPU node		
premium	6 days	270 nodes + 4 himem nodes		
express	12 hours	274 nodes (incl. 4 dedicated nodes)		
long	2 weeks	4 dedicated (192 cores)		
gpu	6 days	44 V100		
private	unlimited	private nodes		

*default memory : 3000MB / per core

Useful LSF Commands (see man page for details)

bsub

 submits a job interactively or in batch using LSF batch scheduling and queue layer of the LSF suite

```
bjobs <job ID# >
```

 displays information about jobs in queue or a recently run job. You can use the -l option to view a more detailed accounting

```
bkill <job ID# >
```

kill the job with job ID number of #

bkill 0

kill all your jobs

```
bhist -l <job ID# >
```

displays historical information about jobs. A "-a" flag can displays information about both finished and unfinished jobs

Last but not Least

Got a problem? Need a program installed? Send an email to:

hpchelp@hpc.mssm.edu