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ABSTRACT

B-catenin signaling is required for embryonic tooth mor-
phogenesis and promotes continuous tooth development
when activated in embryos. To determine whether acti-
vation of this pathway in the adult oral cavity could
promote tooth development, we induced mutation of
epithelial B-catenin to a stabilized form in adult mice.
This caused increased proliferation of the incisor tooth
cervical loop, outpouching of incisor epithelium, abnor-
mal morphology of the epithelial-mesenchymal junc-
tion, and enhanced expression of genes associated with
embryonic tooth development. Ectopic dental-like struc-
tures were formed from the incisor region following
implantation into immunodeficient mice. Thus, forced
activation of fB-catenin signaling can initiate an embry-
onic-like program of tooth development in adult rodent
incisor teeth.
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B-catenin Initiates Tooth
Neogenesis in Adult Rodent
Incisors

INTRODUCTION

e Wnt/B-catenin signaling pathway regulates many aspects of develop-
ment and disease. Binding of a Wnt ligand to Frizzled (FZ) and LDL-
related protein (LRP) 5/6 receptors at the cell surface results in stabilization
and accumulation of cytoplasmic B-catenin, its translocation to the nucleus,
and transcriptional activation of target genes by complexes of -catenin with
members of the LEF/TCF transcription factor family (Gordon and Nusse,
2006). Wnt/B-catenin signaling activity is observed at the initiation and sub-
sequent stages of embryonic tooth development and is required at multiple
stages of this process (Jarvinen et al., 2006; Liu et al., 2008). Forced activa-
tion of B-catenin signaling in embryonic oral epithelium results in increased
expression of genes required for tooth morphogenesis, continuous initiation
of dental development, and ectopic tooth formation (Jarvinen et al., 2006;
Kuraguchi et al., 2006; Liu et al., 2008). Analysis of these data identifies
[-catenin signaling as a key fate determinant in the embryonic oral ectoderm,
and places this pathway upstream of other factors necessary for dental devel-
opment. However, the functions of f-catenin signaling in controlling den-
tal epithelial stem cell proliferation, and whether activation of this pathway
can promote tooth development in the adult, are unknown. To address these
questions, we examined the pattern of endogenous Wnt/B-catenin signaling
activity in the developing and post-natal incisor tooth cervical loop, a known
repository of dental stem cells, and determined the effects of in vivo activation
of Wnt/B-catenin signaling in the adult oral cavity by mutation of B-catenin to
a constitutively active form.

MATERIALS & METHODS
Generation of Mouse Lines and Genotyping

Mice carrying tetO-Cre (Mucenski et al., 2003) and KRT5-r¢tTA (Diamond
et al., 2000) transgenes and Ctnnb """ (Harada et al., 1999) were placed on
doxycycline chow (1 mg/kg, Bio-serv, Laurel, MD, USA) to induce B-catenin
mutation (Zhang et al., 2008). All animal experiments were performed under
University of Pennsylvania IACUC-approved protocols.

Histology, Imnmunofluorescence, BrdU
Incorporation, and in situ Hybridization

Dissected incisors were fixed and decalcified in pH 7.0 2% Formalin, 10% EDTA
in PBS at 4°C for 14 days. Histology, immunofluorescence with anti-p-catenin,
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BrdU assays, and in situ hybridization with digoxygenin-labeled
probes were as described previously (Andl et al., 2002; Liu et al.,
2007, 2008). To control for specificity of immunofluorescence,
we omitted primary antibody.

Incisor Implantation and Micro-CT Analysis

Apical ends of incisors dissected from bone under sterile condi-
tions (Akintoye et al., 2006) were implanted in duplicate into
dorsal subcutaneous incisions in 8-week-old female nude mice
(NIH-III-nu, Charles River Laboratories, Wilmington, MA, USA).
Micro-CT imaging of samples in 70% ethanol was performed with
an eXplore Locus SP scanner (GE Healthcare Techologies,
London, Ontario, Canada), with the following parameters: 80 kVp,
80 pA, 250-pm Al filter, and 4 frame averages. Images were
acquired at an isotropic resolution of 16 pm (16 um x 16 pm X 16
pum cubic voxels) with 2 hrs of scan time, 760 views in 0.5° steps
with 1.7 sec of exposure and a 2x2 detector bin mode. Raw data
were reconstructed by a modified Feldkamp algorithm (Feldkamp
et al., 1984), with 16-bit gray-scale apparent density units.
Reconstructed image data were viewed with MicroView (GE
Healthcare) and Image] (http://rsbweb.nih.gov/ij/). Multi-planar
reformatting at arbitrary oblique slices, maximum intensity projec-
tion, and volume rendering techniques were performed with
OsiriX (www.osirix-viewer.com). For color volume rendering, we
chose a color palette representative of bones and muscles and a
non-linear logarithmic inverse opacity function to enhance subtle
differences in grayscale. This allowed for the identification of
enamel as distinct from soft tissue, dentin, and bone.

RESULTS

Rodent molar teeth, like human teeth, are not replaced in adult
life. However, the rodent incisor tooth grows continuously, rely-
ing on a pool of epithelial stem cells in the labial cervical loop
at the tooth base that constantly generates enamel-secreting
ameloblasts. To examine Wnt/B-catenin signaling activity in
incisor and cervical loop development, we used 3 independent
Whnt reporter transgenic lines: BATgal, TOPGAL, and Axin2"*
(DasGupta and Fuchs, 1999; Jho et al., 2002; Maretto et al.,
2003; Yu et al., 2005). Expression was similar in all 3 lines and
was detected throughout incisor epithelium at E12.5 (Appendix
Fig. 1a), in the enamel knot at E15 (Appendix Fig. 1b), and in
mesenchymal cells adjacent to the enamel knot and developing
cervical loop (Appendix Figs. 1b-1e, 1j, 1k, 1q). Expression of
the Wntl0a and Wnt10b ligands localized to both mesenchymal
and epithelial cells (Appendix Figs. 1f-1i, 1o, 1p). However, in
incisor epithelial cells, Wnt reporter activity was down-regulated
after E15 (Appendix Fig. lc-le, 1j, 1k, 1q), and nuclear local-
ized B-catenin was not observed at P0.5 (Appendix Figs. 11-1n).
Wnat activity was not strongly present in the wild-type epithelial
cervical loop, either during embryonic development (Appendix
Figs. 1b-1e, 1j) or post-natally (Appendix Figs. 1k, 1q).

To determine the effects of inducible forced activation of
epithelial B-catenin signaling in the adult oral cavity, we utilized
Keratin5 (KRTS5)-rtTA tetO-Cre Ctnnb ' mice in which the
gene encoding B-catenin, Ctnnbl, can be mutated to a stabilized,
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constitutively active form in KRTS5-promoter-active epithelial
cells by dosage with oral doxycycline (Zhang et al., 2008).
Immunofluorescence revealed KRTS expression in basal oral
ectodermal cells and incisor epithelia, including stellate reticu-
lum cells of the cervical loop, but not in mesenchymal cells
(Appendix Fig. 2). No dental abnormalities were observed in
uninduced Keratin5-rtTA tetO-Cre Ctnnb " mice (data not
shown). In adult mutants examined 5 days after the initiation of
doxycycline induction, -catenin protein levels were increased
in oral and dental epithelia, including the incisor cervical loop
(Figs. 1a, 1b). Serial sectioning, histological analysis, and analy-
sis of BrdU incorporation revealed marked thickening of the
stellate reticulum layer (Fig. 1d, arrowhead), expansion and
outpouching of the labial cervical loop (Fig. 1d, arrows), and
increased proliferation of stellate reticulum cells (Figs. le, 1f,
arrowhead). Proliferation of dental papilla mesenchymal cells
adjacent to the inner dental epithelium (IDE) of the cervical loop
was also up-regulated (Figs. le, 1f, arrow).

To investigate the molecular mechanisms underlying the
effects of activated epithelial B-catenin in the cervical loop, we
examined expression of genes required for the development and
maintenance of this structure, including Fgf10, Fgf3, Fgf4, and
Bmp4 (Harada et al., 2002; Wang et al., 2007). In situ hybridiza-
tion did not reveal obvious changes in the expression patterns or
levels of these transcripts in activated f-catenin mutants induced
for 5 days compared with controls (data not shown). We there-
fore investigated the effects of activated -catenin on the expres-
sion of Fgf8, which is normally expressed in embryonic dental
lamina and competes with Bmp4, expressed in adjacent epithe-
lium, to specify the locations of dental precursor vs. intervening
non-dental cells at the initiation of embryonic dental develop-
ment (Neubuser et al., 1997; St Amand et al., 2000). In control
adult incisors, Fgf8 mRNA was present in IDE cells of the cervi-
cal loop and pre-ameloblasts, and was weakly expressed in the
stellate reticulum and in dental papilla mesenchyme adjacent to
the IDE (Fig. 1g). In mutant mice, Fgf8 expression was up-
regulated in stellate reticulum (Fig. 1h, arrowhead), and was
ectopically activated in dental follicle mesenchyme adjacent to
the outer dental epithelium (ODE) and in pre-odontoblasts (Fig.
1h, arrows). These results indicate that forced activation of
B-catenin up-regulates Fgf8 in dental epithelium and mesen-
chyme. Since PB-catenin is mutated only in epithelial cells,
expression of Fgf8 in mutant mesenchyme is likely a secondary
effect of B-catenin activation.

To determine the longer-term effects of B-catenin activation, we
examined adult mutant and littermate control mice 20 days after
initiating doxycycline induction. Histological analysis revealed
ectopic outpouchings of incisor tooth tissue in the cervical loop
and from more anterior labial and, to a lesser extent, lingual incisor
regions (Appendix Figs. 3a, 3b; Figs. 2a-2d). Although superfi-
cially similar in appearance to embryonic tooth buds, the out-
pouchings lacked a clear histological structure resembling an
enamel knot. In some cases, we observed ectopic elongated epithe-
lial and mesenchymal cells that were separated by a layer of acel-
lular material (Figs. 2a-2d) and were positive for the ameloblast
marker Amelogenin and the ameloblast and odontoblast marker
Dentin Sialophosphoprotein (Dspp), respectively (Figs. 2e-2h;
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Appendix Figs. 3c-3f).
Mutant epithelium dis-
played elevated expres-
sion of B-catenin protein
(Appendix Figs. 3g-3j)
and the Wnt target gene
c-myc (Appendix Figs.
3k, 31). Proliferation was
increased in the mutant
cervical loop, invaginat-
ing epithelium, and adja-
cent mesenchymal cells
compared with controls
(Appendix Figs. 3m, 3n).
No obvious abnormali-
ties in the molar teeth or
the diastema region were
observed after 20 days of
doxycycline  induction.
Mice died approximately
3 wks after the initiation
of induction, precluding
analysis of the possible
effects of B-catenin acti-
vation in molar tooth and
diastema regions at later
stages.

To determine whether
prolonged induced epi-
thelial B-catenin activa-
tion alters expression of
additional markers and
regulators of embryonic
tooth development in
incisor teeth, we exam-
ined expression of den-
tal regulators 20 days
after the initiation of
induction. Expression of
FgfS mRNA remained
dramatically  up-regu-
lated in mutant cervical
loop and adjacent mes-
enchymal cells (Appendix
Figs. 4a, 4b). Fgf8 was
also expressed in the
epithelium and mesen-
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Figure 1. Forced activation of B-catenin signaling caused expansion of the incisor tooth cervical loop. Sagittal
sections of control or KRT5-rtTA tetO-Cre Ctnnb 17e<9/+ decalcified upper incisors at postnatal day (P) 41, 5 days
after the initiation of doxycycline induction. (a,b) Bcatenin protein (red) was elevated in mutant epithelial cells
(arrow). (c,d) Hematoxylin and eosin (H&E) staining revealed expansion of mutant stellate reticulum (arrowhead)
and multiple outpouchings of the cervical loop (arrows). (e,f) BrdU incorporation (red) was increased in mutant
stellate reticulum (f, arrowhead) and dental pulp (f, arrow). (g,h) Increased and expanded Fgf8 RNA expression
(purple-brown) in mutant stellate reticulum (arrowhead), odontoblasts, and mesenchymal cells adjacent to the
ODE (arrows). White dashed lines in (e,f) outline the stellate reticulum region. Blue dashed lines outline the
epithelium in (g,h). Sections in (a,b,e,f] were counterstained with DAPI (blue). Sections in (g,h) were
counterstained with methyl green.

Amelogenin

control

Figure 2. Prolonged activation of B-catenin signaling causes formation of ectopic dental structures. Sagittal
sections of control or KRT5-rtTA tetO-Cre Ctnnb 17e<9/+ decalcified upper incisors at postnatal day (P) 41, 20
days after the initiation of doxycycline treatment. (a-d) H&E staining reveals outgrowth of mutant dental
epithelial and mesenchymal tissue. Mutant stellate reticulum is expanded, and stellate reficulum cells (d, arrow)
and underlying mesenchymal cells (d, arrowhead) are elongated in the mutant compared with the control. A
layer of acellular material separates these 2 layers. (c,d) Magnifications of the boxed areas in (a,b), respectively.
(e-h) Differentiation of ectopic dental tissues in the mutant (f, h, arrow), indicated by in situ hybridization for the
ameloblast marker amelogenin (e-h) (purple-brown signals). (g,h) Magnifications of the boxed areas in (e,f),
respectively. Sections in (e-h) were counterstained with methyl green.

chyme of ectopic tooth-like structures (Appendix Figs. 4c, 4d).
Mesenchymal FGF3 is a key regulator of dental epithelial stem
cell proliferation, while mesenchymal BMP4 actively represses
FGF3 expression, thus negatively controlling epithelial stem cell
and transient amplifying cell proliferation (Wang et al., 2007).
At 20 days, expression of Figf3 mRNA was ectopically activated
in all layers of the cervical loop in a scattered manner and was
also up-regulated in dental mesenchyme adjacent to the IDE (Figs.
3a, 3b), as well as in the epithelium and mesenchyme of ectopic

tooth-like structures (Appendix Figs. 4e-4h). The relatively late
effects of B-catenin mutation on Fgf3 expression, and its induc-
tion in the mesenchyme, suggest that Figf3 up-regulation is an
indirect consequence of P-catenin activation. Expression of
Bmp4 was down-regulated in both epithelium and mesenchyme
of mutant incisors compared with controls (Figs. 3¢, 3d), and
nuclear localized phosphorylated Smadl,5,8, an indicator of
active BMP signaling, was decreased in mutant epithelium and
mesenchyme (Figs. 3e, 3f).
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Figure 3. Prolonged activation of epithelial B-catenin caused altered expression of multiple signaling molecules.
Upper incisors were dissected from P70 control or mutant mice following 20 days of doxycycline treatment,
decalcified, and sectioned sagittally. {a,b) In situ hybridization for Fgf3 (purple-brown) reveals expression of
Fgf3 in dental pulp adjacent to the cervical loop in controls. In mutants, Fgf3 is up-regulated in this area, and
is also elevated in the mutant cervical loop (arrow). (c-f) Bmp4 transcripts (purple-brown) (c,d) and pSMAD1,5,8
protein (red) (e,f) localize to control ameloblasts, odontoblasts, and pulp cells adjacent to the cervical loop, and
are reduced in mutant tissue. (g,h) In situ hybridization reveals Shh expression in control pre-ameloblasts (g,
arrow). In the mutant, Shh expression is induced in epithelial outgrowths (h, arrows).

Shh signaling regulates growth and morphogenesis of the
embryonic tooth, including the invagination of dental epithe-
lium (Dassule et al., 2000; Gritli-Linde et al., 2002; Cobourne
et al., 2004). Expression of Shh mRNA was limited to pre-
ameloblasts adjacent to the cervical loop in control incisors. In
mutant incisors, the domain of Shh mRNA expression was
expanded to include the multiple epithelial invaginations into
the mesenchyme (Figs. 3g, 3h). Like Shh, Wnt10b is normally
expressed from early stages of embryonic dental development,
first appearing in dental placodes, and subsequently localizing
to the enamel knot. Wnt10b expression was elevated in amelo-
blasts and in the epithelium of mutant ectopic dental structures,
in a pattern similar to that of Sh/ (Appendix Figs. 4i-4n). Thus,
induced activation of B-catenin in the adult incisor enhances
and/or expands the expression of multiple markers and regula-
tors of embryonic tooth development and results in the forma-
tion of ectopic differentiating dental structures. Analysis of
these data suggests that the mechanisms underlying B-catenin-
mediated ectopic dental development may partially mimic those
operating in embryonic tooth development.

To test whether ectopic dental structures can become fully
mineralized, we dissected the apical ends of incisors from adult
mutant mice 10 days after initiating induction and implanted
these subcutaneously into nude mice for 8 wks. While control
implants maintained their original shapes, mutant implants gave
rise to cyst-like structures (Appendix Figs. Sa, 5b). Visualization
of the three-dimensional distribution of mineralization by micro-
computed tomography (micro-CT) (Ritman, 2002, 2004)
showed that the cyst-like structures in mutant implants pos-
sessed dentin-like radiopacity, with patchy regions of higher
radiopacity resembling that of enamel in control implants (Figs.
4a, 4b; Appendix Figs. 5c, 5d, arrows). Histological analysis of
decalcified samples revealed that the cysts contained numerous
dental structures at various stages of development, pre-enamel,

shown). Ectopic dentin
tubules and enamel-like
structures could be iden-
tified in non-decalcified
ground sections of implants
(Figs. 4g-4j; Appendix
Figs. 5k-5m). Thus, ecto-
pic dental structures gen-
erated by the activation
of [-catenin signaling
can differentiate to produce mineralized dentin and enamel.

DISCUSSION

Deletion of the intracellular Wnt inhibitor Apc or B-catenin
activation in embryogenesis or early post-natal life causes
ectopic tooth formation from dental lamina and molar as well
as incisor areas (Jarvinen et al., 2006; Kuraguchi et al., 2006;
Liu et al., 2008; Wang et al., 2009). By contrast, we found
that, in mature adult mutant mice, although B-catenin was
activated in the diastema and both lingual and labial incisor
epithelia, the formation of ectopic dental structures was most
prominent in the labial incisor and was absent from the dia-
stema and molar teeth 20 days after the induction of B-catenin
mutation. This pattern of ectopic dental development is simi-
lar to that recently described for K/I4-CreER™-mediated
inducible deletion of Apc in mature adult mice (Wang et al.,
2009). Analysis of these data indicates that embryonic and
adult oral epithelia differ in their sensitivity to the effects of
B-catenin activation. Lack of adult molar phenotypes may
also reflect the fact that dental lamina epithelial cells of
molar teeth degenerate following eruption. Differential sus-
ceptibility within the incisor tooth may result from asymmet-
ric distribution of key signaling molecules in labial and
lingual mesenchyme (Wang et al., 2007), allowing the labial
incisor to provide a particularly favorable environment for
ectopic tooth development.

Although B-catenin was mutated only in epithelial cells in the
mutants examined here, adjacent mesenchymal cells were
induced to proliferate and differentiate into odontoblasts and
papilla-like cells, presumably by secreted factors (such as FGFs)
expressed in response to epithelial B-catenin activation. Several
different populations of mesenchymal stem cells have been
identified in teeth (Seo et al., 2004; Sonoyama et al., 2006; Song
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et al., 2009) and may contrib-
ute to these lineages in ectopic,
induced tooth structures.
Analysis of our data indi-
cates that adult rodent incisor
epithelial cells can be forced
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to adopt an embryonic-like
developmental program by
activating P-catenin signaling.
Further investigations will be
needed to determine whether
co-expression of additional fac-
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tors could render other adult
oral epithelial cell populations
competent to participate in
ectopic tooth formation. Since
tight regulation of [-catenin
signaling is necessary for the
formation of normally shaped
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teeth from embryonic oral ecto-
derm (Jarvinen et al., 2006; Liu
et al., 2008), potential future
applications of our findings in
tissue engineering approaches
will likely require the develop-
ment of methods for controlling
and modulating spatial and
temporal activation of the
[-catenin pathway.
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