

Molecular Mechanisms Regulating Hair Follicle Development

Sarah E. Millar

Departments of Dermatology and Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A.

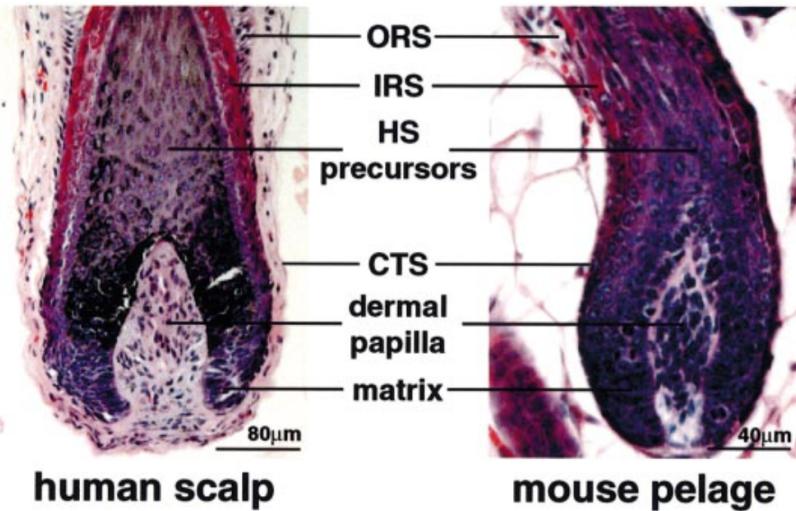
Clinical conditions causing hair loss, such as androgenetic alopecia, alopecia areata, and scarring alopecia, can be psychologically devastating to individuals and are the target of a multimillion dollar pharmaceutical industry. The importance of the hair follicle in skin biology, however, does not rest solely with its ability to produce hair. Hair follicles are self-renewing and contain reservoirs of multipotent stem cells that are capable of regenerating the epidermis and are thought to be utilized in wound healing. Hair follicles are also the sites of origin of many neoplasias, including some basal cell carcinomas and pilomatricoma. These diseases result from inappropriate activation of signaling pathways that regulate hair

follicle morphogenesis. Identification of the signaling molecules and pathways operating in developing and postnatal, cycling, hair follicles is therefore vital to our understanding of pathogenic states in the skin and may ultimately permit the development of novel therapies for skin tumors as well as for hair loss disease. The purpose of this review is to summarize recent progress in our understanding of the molecular mechanisms regulating hair follicle formation, and to discuss ways in which this information may eventually be utilized in the clinic. Key words: dermis/epidermis/morphogenesis/signaling/skin. *J Invest Dermatol* 118:216–225, 2002

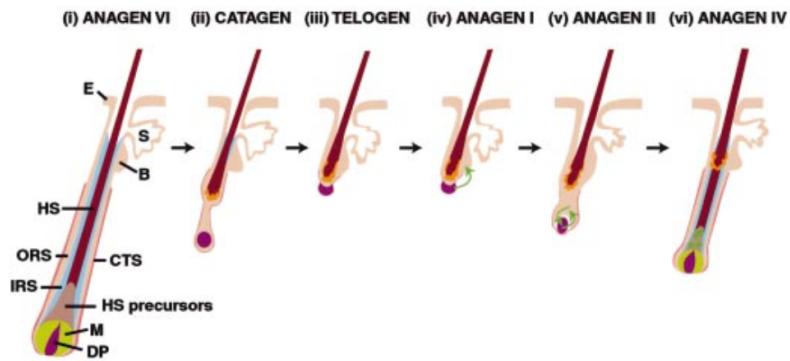
STRUCTURE AND PROPERTIES OF THE HAIR FOLLICLE

The mature hair follicle is a complex structure, composed of several concentric cylinders of epithelial cells, known as root sheaths, which surround the hair shaft (Sperling, 1991) (Fig 1). Although it is largely epithelial in origin, the follicle contains at its base a ball of specialized dermal cells, the dermal papilla, which play a crucial part in the regulation of successive cycles of postnatal hair growth (Fig 2). At the onset of phases of hair growth, signals from the dermal papilla are thought to instruct epithelial stem cells residing in the bulge region of the follicle to divide transiently (Oliver and Jahoda, 1988; Cotsarelis *et al*, 1990; Wilson *et al*, 1994; Lyle *et al*, 1998). Stem cell progeny migrate to the base of the follicle, where they surround the dermal papilla, forming the hair matrix (Oshima *et al*, 2001; Taylor *et al*, 2000). In response to further signals from the dermal papilla, matrix cells proliferate and begin the process of terminal differentiation, moving upward in the follicle and forming the hair shaft and inner root sheath (Oliver and Jahoda, 1988; Taylor *et al*, 2000; Oshima *et al*, 2001). Pigmentation of the hair results from the activity of melanocytes, which reside in the hair follicle bulb and deposit pigment granules into the hair shaft as it forms. Periods of hair growth are followed by a regression phase, when the lower part of the follicle undergoes programmed cell death (Cotsarelis, 1997), and a resting phase, before onset of a new growth phase (Fig 2). Cyclical growth of hair continues throughout postnatal life, and allows the follicle to remodel itself. This is particularly evident in the response of hair follicles to androgens, which cause enlargement of beard hair follicles in adolescent boys,

and miniaturization of scalp hair follicles in men with androgenetic alopecia (Hamilton, 1942).


COMMUNICATION BETWEEN CELLS OF DIFFERENT TYPES IS REQUIRED FOR HAIR FOLLICLE FORMATION

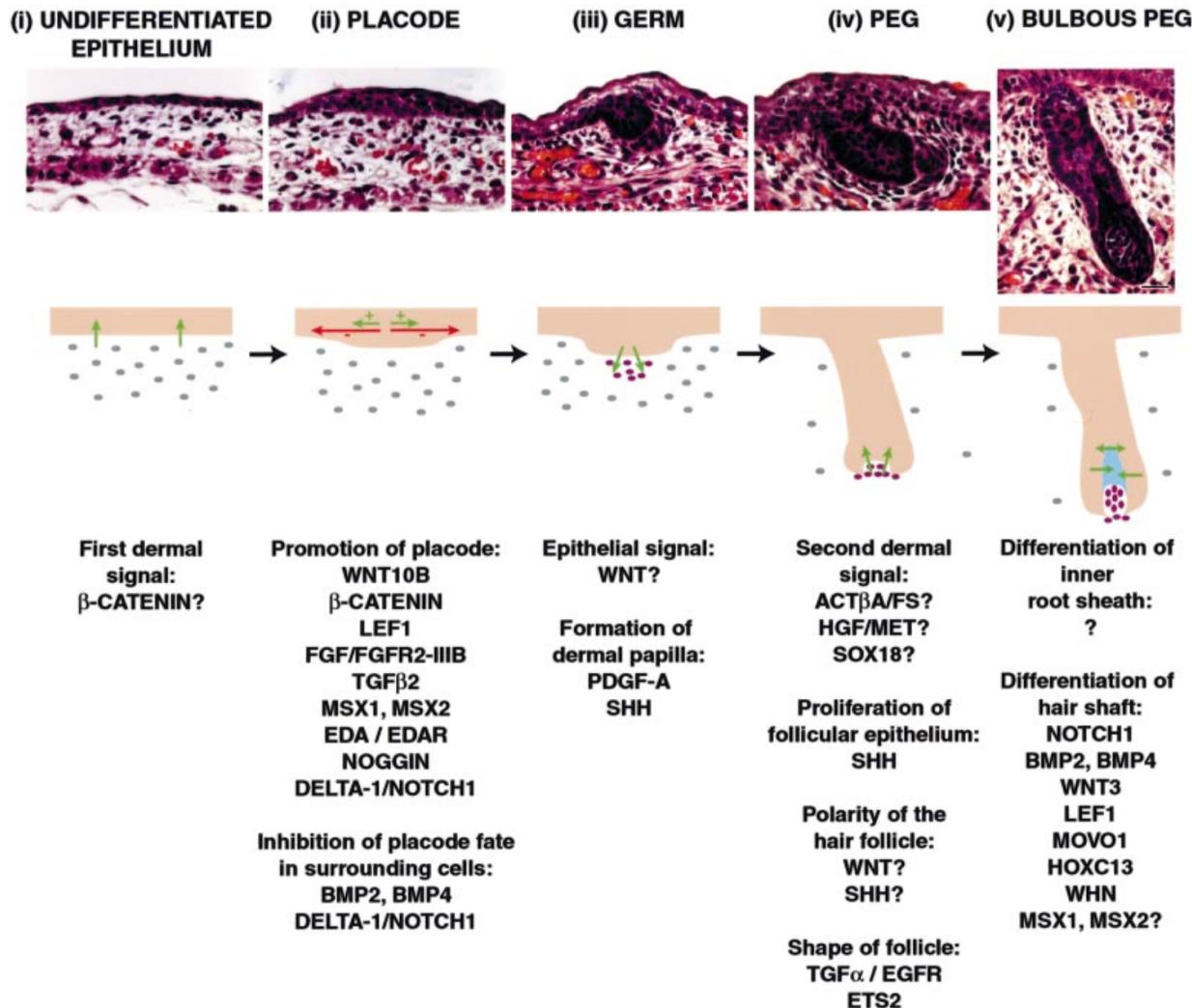
The formation of hair follicles occurs during embryogenesis and relies on a series of signals sent between dermal cells and overlying surface epithelial cells that cause fate changes in both cell populations, ultimately resulting in differentiation of the hair shaft, root sheaths, and dermal papilla (Hardy, 1992). The existence of these signals was revealed by experiments performed as long ago as the 1950s, in which dermis and epidermis of different origins were recombined at different embryologic stages. These experiments utilized mouse and chick skin, and took advantage of similarities in the mechanisms regulating the early steps of hair and feather development. It was found that an initial signal arising in the dermis (the “first dermal signal”) causes the formation of regularly spaced thickenings in the epidermis, known as placodes (Hardy, 1992) (Fig 3). An “epithelial signal” from the placode causes the clustering of a group of underlying cells in the mesenchyme, forming a “dermal condensate”. In response to a “second dermal message” from the dermal condensate, the epithelial placode cells proliferate and invade the dermis, eventually surrounding the dermal condensate, which develops into the hair follicle dermal papilla (Hardy, 1992). Further proliferation and differentiation of the epithelial cells results in the formation of the inner root sheath and hair shaft of the mature follicle, processes that are likely to require lateral communication between epithelial cells (Millar *et al*, 1999; Lin *et al*, 2000).


The finding that communication between different types of cells is critical for hair follicle development implies that intercellular signaling molecules play key roles in this process. A variety of approaches have been taken to identify these molecules, their effectors, and their downstream targets, including surveys of the

Manuscript received June 19, 2001; revised September 21, 2001; accepted for publication October 15, 2001.

Reprint requests to: Dr. Sarah E. Millar, M8D Stellar-Chance Laboratories, 422 Curie Boulevard, Philadelphia, PA 19104-6100, U.S.A. Email: millars@mail.med.upenn.edu

Figure 1. Comparison of the structure of the hair bulb in human scalp and mouse pelage. Paraffin sections were stained with hematoxylin and eosin and photographed at magnifications of $\times 10$ (human) and $\times 20$ (mouse). IRS, inner root sheath; ORS, outer root sheath; CTS, connective tissue sheath; HS, hair shaft.

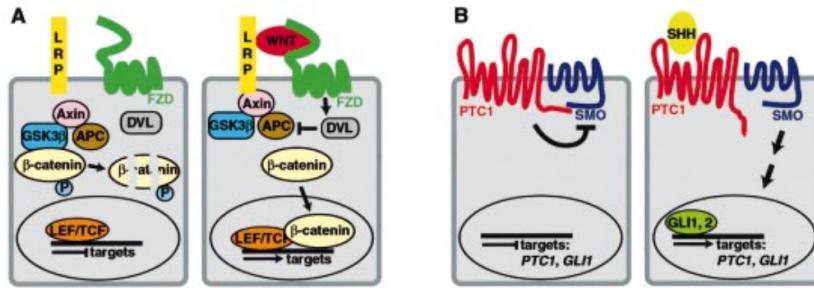

Figure 2. Schematic depiction of the hair growth cycle. (i) During anagen, matrix cells proliferate and differentiate to form the inner root sheath and hair shaft. (ii) During catagen the lower two-thirds of the follicle undergo programmed cell death. (iii) The follicle enters a resting phase, telogen. (iv) At the onset of a new cycle of hair growth, follicular epithelial stem cells are stimulated to divide by signals from the dermal papilla (green arrow). (v) During anagen signals from the dermal papilla stimulate the division of matrix cells and the inductive properties of the dermal papilla are maintained by signals from the follicular epithelium (green arrows). (vi) Differentiation of matrix cells into hair shaft and inner root sheath may involve lateral signaling between epithelial cells (green arrows). IRS, inner root sheath; E, epidermis; HS, hair shaft; ORS, outer root sheath; DP, dermal papilla; M, matrix; CTS, connective tissue sheath; B, bulge; S, sebaceous gland.

expression patterns of families of candidate signaling factors, the analysis of transgenic and knockout mice carrying mutations in candidate genes, and analysis of the effects of introducing candidate molecules through bead implantation into the skin. Most of these studies have been carried out in animal systems, particularly mouse and chick. These are not ideal systems for studying all aspects of human hair follicle biology, for instance mouse and human follicles show differing responses to androgens. Descriptive analyses of gene expression patterns in human skin, where available, however, suggest that the molecules regulating the basic mechanisms of follicle development are similar in human, mouse, and chick (Holbrook *et al.*, 1993; Kaplan and Holbrook, 1994). Importantly, human families carrying mutations in genes controlling hair follicle development show similar phenotypes to the corresponding mouse mutants (Cachon-Gonzalez *et al.*, 1994; Nehls *et al.*, 1994; Segre *et al.*, 1995; Brissette *et al.*, 1996; Hahn *et al.*, 1996; Johnson *et al.*, 1996; Kere *et al.*, 1996; Lindén *et al.*, 1996; Ferguson *et al.*, 1997; Srivastava

hair follicle formation remain unknown or partially characterized, recent studies have led to an explosion of information about signaling in developing hair follicles, providing exciting opportunities for therapeutic innovation.

THE FIRST DERMAL SIGNAL

It is well established from experiments in the mouse and chick, that dermis from body regions that will eventually develop hair or feathers when combined with epidermis from non-hair bearing regions, will direct the formation of appendages of the size and spacing characteristic of the region from which the dermis was derived (Hardy, 1992). Thus, in humans, one would expect that scalp dermis is able to induce the formation of large hair follicles that produce thick, long hair, whereas dermis from the forearm directs the formation of smaller follicles. Consistent with this, dermal sheath dissected from a male human scalp was able to induce the formation of thick, darkly pigmented hair when implanted into


Figure 3. The events of hair follicle morphogenesis. The upper panels show paraffin sections of primary mouse hair follicles at embryonic days 14.5 (undifferentiated epithelium and placode), 15.5 (germ and peg), and 18.5 (bulbous peg), stained with hematoxylin and eosin. The middle panels show these same developmental stages represented schematically, with intercellular signals indicated by colored arrows, and candidate molecules important for each stage listed below (see text for references). (i) The initial signal directing hair follicle formation arises in the mesenchyme (gray dots) and instructs the overlying epithelium (pink stripe) to thicken, forming a placode. (ii) Placode formation is facilitated by promoting signals (+), shown as green arrows, and prevented in neighboring epithelial cells by inhibitory signals (-), shown as red arrows. (iii) Signals from the epithelium induce the clustering of mesenchymal cells to form a dermal condensate (purple dots). (iv) The dermal condensate signals to the follicular epithelium to proliferate and grow down into the dermis. (v) The dermal condensate becomes enveloped by follicular epithelial cells to form the dermal papilla. Differentiation of the inner root sheath (blue) may be regulated in part by lateral signaling between epithelial cells (green arrows). Photographs in each of the upper panels were taken at the same magnification. Scale bar, 20 μ m.

determining the identity of the “first dermal signal” is likely to be of key importance. Currently, however, this signal has not been characterized, and its mode of action remains a subject for speculation.

In one model to explain how the dermal signal operates, the spacing and size of placodes are regulated by an intrinsically periodic dermal signal, which varies in character in different body regions. To test this hypothesis, Jiang *et al* (1999) marked dermal condensates in chick skin by injection of the lipophilic dye, Dil, and then dissociated the dermis and epidermis into single cell suspensions. When these cells were recombined, a regular array of feather placodes and dermal condensates was established. Labeled

placodes, and arguing against the idea of a periodic dermal signal. In an alternative model, the dermal signal occurs uniformly within each body region and triggers the activation of promoters and repressors of follicle fate that then compete with one another, resulting in the establishment of a regular array of follicles (Slack, 1991; Barsh, 1999). Differences in the levels of promoter and repressor activation might then account for regional differences in the size and spacing of follicles. Consistent with this model, several positive and negative regulators of hair follicle fate are initially expressed uniformly in the epidermis and subsequently become localized to placodes (see below).

A first clue to the molecular nature of the dermal signal has come

Figure 4. Schematic depictions of the WNT and Sonic hedgehog (SHH) signaling pathways. (A) The WNT signaling pathway. In the absence of a WNT signal, cytoplasmic β -catenin is phosphorylated and targeted for degradation by a complex of proteins, including axin, adenomatous polyposis coli tumor suppressor protein (APC) and glycogen synthase 3- β (GSK3- β). In the presence of a WNT signal the degradation machinery is inhibited and β -catenin translocates to the nucleus where it forms a transcription complex with DNA binding factors of the lymphoid enhancer-binding factor/T cell factor (LEF/TCF) family, and activates transcription of target genes. (B) The SHH signaling pathway. In the absence of an SHH signal, activity of the smoothened (SMO) protein is inhibited by the actions of the SHH receptor Patched 1 (PTC1). In the presence of SHH, the repression of SMO is lifted, and target genes, including *PTC1* and *GLI1*, are transcribed through the actions of the transcription factors GLI1 and GLI2.

over short distances to control cell fate in many organ systems, degradation of cytoplasmic β -catenin is inhibited. In these circumstances β -catenin accumulates in the cytoplasm and translocates to the nucleus where it forms transcriptionally active complexes with members of the lymphoid enhancer-binding factor/T cell factor (LEF/TCF) family of DNA binding factors (Fig 4A) (reviewed in Wodarz and Nusse, 1998). In the chick, nuclear β -catenin is found transiently in the dense dermis underlying the feather tract 2 d before the appearance of molecular and morphologic signs of placode development (Noramly *et al*, 1999). Consistent with this, *Lef1* is expressed in the mesenchyme of the mouse vibrissa pad prior to vibrissa follicle development, and initiation of vibrissa follicle development is dependent on this expression (Kratochwil *et al*, 1996). Interestingly, development of dorsal feather inducing dermis has recently been found to be dependent on a signal from the dorsal neural tube, which can be substituted by *Wnt1* (Olivera-Martinez *et al*, 2001). These findings suggest that activation of the WNT signaling pathway in the dermis may be involved in establishing the first dermal signal. The appearance of nuclear β -catenin is uniform within the dense dermis (Noramly *et al*, 1999), consistent with the hypothesis that the “first dermal signal” is uniform rather than periodically localized.

FORMATION OF PLACODES: A COMPETITION BETWEEN PLACODE PROMOTERS AND PLACODE REPRESSORS

Descriptive and functional studies in mouse and chick have revealed that in response to the first dermal signal, members of several classes of signaling molecules are expressed in the follicular epithelium. These include both promoters and repressors of placode fate. Several lines of evidence suggest that WNT paracrine signaling molecules act early in the process of follicle formation to promote placode fate. In the mouse embryo, *Wnt10b* is initially expressed uniformly in the epidermis and is markedly upregulated in placodes (St-Jacques *et al*, 1998; Reddy *et al*, 2001) and *Wnt7a* shows a similar pattern of expression in embryonic chick skin (Widelitz *et al*, 1999). In the chick, 1 d after the appearance of nuclear β -catenin in the dense dermis, nuclear β -catenin is detected in the overlying epithelium, indicating that the WNT signaling pathway is activated in the epithelium (Noramly *et al*, 1999). Like expression of mouse *Wnt10b* and chick *Wnt7a*, nuclear β -catenin becomes gradually elevated in regions destined to form placodes (Noramly *et al*, 1999). DasGupta and Fuchs (1999) have generated transgenic mice bearing a TODCAT reporter gene that is responsive

and dermal condensates, providing an indication that the WNT pathway is active in both epithelial and mesenchymal components of developing follicles (DasGupta and Fuchs, 1999). Expression of a stabilized form of β -catenin protein in chick or mouse epidermis causes the formation of ectopic follicles, indicating that activation of the WNT signaling pathway in the epithelium is sufficient to direct follicle development (Gat *et al*, 1998; Noramly *et al*, 1999; Widelitz *et al*, 2000). Conversely, loss of function of the β -catenin gene in mouse epidermis results in a failure of placode development (Huelsken *et al*, 2001), and a null mutation of the mouse gene encoding the WNT effector protein LEF1 causes failure of formation of vibrissae and two-thirds of the body hair follicles (van Genderen *et al*, 1994; Kratochwil *et al*, 1996).

Elegant tissue recombination experiments performed by Kratochwil *et al* (1996) demonstrated that expression of *Lef1* in the mesenchyme is necessary for the initiation of mouse vibrissa follicle development, and that transient expression of *Lef1* in the epithelium is required for the completion of morphogenesis. Pelage hair follicles developed normally in the absence of mesenchymal *Lef1*, but formed in reduced numbers and with less pronounced keratinization in the absence of epithelial *Lef1*. These results suggest that WNT signaling is required at several different stages in the development of vibrissae and pelage hair follicles, and that there may be partial functional redundancy of LEF1 with other LEF/TCF family members. Three other members of this gene family have been identified: *Tcf1*, *Tcf3*, and *Tcf4*. *Tcf1* is reportedly not expressed in keratinocytes (Zhou *et al*, 1995); however, its expression in the dermis preceding hair follicle development has not been examined. *Tcf3* is known to be expressed in the skin and hair follicles, although the TCF3 protein is generally associated with repression of the canonical WNT signaling pathway (Barker *et al*, 1999; Merrill *et al*, 2001). TCF4 protein is apparently not expressed in human keratinocytes or hair follicles in the second trimester (Barker *et al*, 1999); however, expression of TCF4 in the dermis and epithelium at earlier stages of human hair follicle development has not been carefully analyzed. Close inspection of published *in situ* hybridization data reveals expression of *Tcf4* in the skin and vibrissa plate of the mouse embryo at embryonic day (E)13.5 (Korinek *et al*, 1998) and in vibrissa follicles at E15.5 and E18 (Lee *et al*, 1999). It is likely that further analysis of *Tcf1* and *Tcf4* expression patterns in skin, vibrissa, and hair follicles will reveal which of these genes might substitute for *Lef1* at certain stages of follicle development.

In addition to ectopic follicles, expression of stabilized β -catenin in mouse or chick causes follicle-based tumors (Gat *et al*, 1998).

molecular link between the early events of follicle formation and tumorigenesis.

Fibroblast growth factors (Fs) and FGF receptor genes are expressed at early stages of follicle development and also appear to promote follicle formation, as exogenous FGF molecules induce ectopic follicles in wild-type chick embryos, and feather buds in *scaleless* (*sc/sc*) embryos that otherwise fail to develop feathers as a result of an ectodermal defect (Chuong *et al*, 1996; Song *et al*, 1996; Widelitz *et al*, 1996; Jung *et al*, 1998). Conversely, a loss of function mutation in the mouse gene encoding fibroblast growth receptor 2-IIIB causes defective development of the skin and hair follicles (Revest *et al*, 2001). Overexpression of FGF4 in embryonic chick skin alters the pattern of β -catenin mRNA expression suggesting a possible role for FGF in elevating β -catenin expression in placodes (Widelitz *et al*, 2000).

The gene encoding transforming growth factor- β (TGF- β 2) is expressed in both the placode and the dermal condensate (Ting-Berreh and Chuong, 1996a; Ting-Berreh and Chuong, 1996b), and TGF- β 2-soaked beads can induce the formation of dermal papillae in chick embryo mesenchyme that has been stripped of epithelium, and hair follicles in mouse embryo skin explants (Ting-Berreh and Chuong, 1996b; Foitzik *et al*, 1999), suggesting TGF- β 2 as another promoter of follicle fate. Consistent with this, mice lacking a functional *Tgfb2* gene have reduced numbers of hair follicles and a delay in follicular morphogenesis (Foitzik *et al*, 1999). The homeobox-containing genes *Msx1* and *Msx2* are expressed in placodes (Noveen *et al*, 1995), and mutant mice lacking both of these genes have reduced numbers of hair follicles (Satokata *et al*, 2000), indicating that the MSX1 and MSX2 transcription factors also play important parts in promoting placode fate.

Recently, ectodysplasin (EDA), a molecule related to tumor necrosis factor, and its receptor ectodysplasia receptor (EDAR) have been identified as essential factors for initiating the development of hair follicles on the basis of their mutant phenotypes in humans and mice (reviewed in Barsh, 1999). The *EDA* gene is mutated in human X-linked anhidrotic ectodermal dysplasia, and in the *Tabby* mouse, causing decreased numbers of hair follicles, and defects of the teeth and sweat glands (Kere *et al*, 1996; Ferguson *et al*, 1997; Srivastava *et al*, 1997). The *EDAR* gene is mutated in human autosomal recessive and dominant hypohidrotic ectodermal dysplasias (Monreal *et al*, 1999) and in the *downless* mouse (Headon and Overbeek, 1999), causing identical phenotypes to those resulting from *EDA* mutations. The mouse *Edar* mRNA is expressed ubiquitously in the epithelium prior to placode formation, and then becomes restricted to placodes (Headon and Overbeek, 1999), whereas the *Eda* mRNA is ubiquitously expressed even after placode formation (Srivastava *et al*, 1997; Mikkola *et al*, 1999). Based on its similarity to the tumor necrosis factor family, EDA is likely to be cleaved from the membrane and to be capable of diffusing to sites of EDAR expression (Headon and Overbeek, 1999). Loss of EDA/EDAR signaling in mutant mice affects the formation only of specific subtypes of hair follicles (Headon and Overbeek, 1999). Two other EDAR family members, TROY and X-linked ectodysplasin-A2 receptor (XEDAR), are expressed in developing hair follicles (Kojima *et al*, 2000; Yan *et al*, 2000) and may substitute for EDAR in unaffected hair types; alternatively, a different signaling pathway may be utilized.

In contrast to EDA and EDAR, members of the bone morphogenic protein (BMP) family of secreted signaling molecules appear to act as inhibitors of follicle formation. *Bmp2* is expressed diffusely in the ectoderm, but then locates at an early stage to the preplacode epithelium and underlying mesenchyme (Noramly and Morgan, 1998). *Bmp7* is expressed in placodes, and *Bmp4* is expressed in the prefollicle mesenchyme (Jung *et al*, 1998; Noramly and Morgan, 1998; Huelsken *et al*, 2001). Ectopic expression of *Bmp2* or *Bmp4* suppresses the formation of feather buds in chick embryos (Jung *et al*, 1998; Noramly and Morgan, 1998). In the

both for promoting the placode and for lateral inhibition of placode fate in surrounding cells (Barsh, 1999; Headon and Overbeek, 1999). Expression of β -catenin in the epithelium is also necessary for the expression of *Bmp4* and *Shh*, as well as *Bmp2* and *Bmp7*, indicating that WNT signaling in the epithelium is also required at a very early stage of morphogenesis (Huelsken *et al*, 2001). *Edar* is expressed in the absence of epithelial β -catenin (Huelsken *et al*, 2001), suggesting that *Edar* expression is either regulated independently of epithelial β -catenin, or lies upstream of activation of WNT signaling in the epithelium.

The genes encoding several secreted molecules capable of inhibiting BMP action, including Noggin, Follistatin (FS), and Gremlin, are expressed in developing follicles (Feijen *et al*, 1994; Roberts and Barth, 1994; Noramly and Morgan, 1998; Jiang *et al*, 1999; Merino *et al*, 1999; Patel *et al*, 1999; Ohyama *et al*, 2001). These are thought to negate BMP action within the follicle, but, in contrast to BMP, may not diffuse into the interfollicular regions. Support for this hypothesis comes from the phenotype of mice lacking *Noggin*, which have fewer hair follicles than normal and retarded follicular development (Botchkarev *et al*, 1999). Expression of *Lef1* is reduced in *Noggin*-null mice, suggesting that *Lef1* expression may be repressed by BMP (Botchkarev *et al*, 1999). Conversely, ectopic expression of *Noggin* in chick or mouse embryonic skin causes enlarged and ectopic follicles (Noramly and Morgan, 1998; Botchkarev *et al*, 1999; Jiang *et al*, 1999). The Notch pathway also appears to play a part in determining the follicular pattern. The Notch ligand *Delta1* is normally expressed in the mesenchyme underlying the placode (Crowe *et al*, 1998; Crowe and Niswander, 1998; Powell *et al*, 1998; Viallet *et al*, 1998), and when misexpressed in a small area of epithelium promotes expression of *Notch1* and accelerates placode formation, while suppressing placode formation in surrounding cells (Crowe *et al*, 1998; Viallet *et al*, 1998). Restriction of *Delta-1* expression to the prefollicle may be controlled by FGF, as in *scaleless* chick mutants *Delta1* is ubiquitously expressed in the mesenchyme, but becomes localized after addition of FGF (Viallet *et al*, 1998).

In summary, the formation of placodes in response to the first dermal signal involves activation of EDA/EDAR signaling in the epithelium, followed by epithelial WNT signaling, and subsequent activation of BMP signaling (Fig 3). The actions of EDA/EDAR and WNT promote placode formation, whereas BMP signaling represses placode fate in adjacent skin. FGF signaling promotes placode fate, and regulates expression of *Delta1*. TGF- β 2 and MSX factors also promote placode fate, but their interactions with other factors regulating hair follicle development have not yet been established.

INDUCTION OF THE DERMAL CONDENSATE: THE FIRST EPITHELIAL SIGNAL

WNT signaling is likely to be required for induction of the dermal condensate. Evidence for this is that the WNT-responsive TOPGAL reporter gene is expressed in the dermal condensate as well as in follicular epithelium (DasGupta and Fuchs, 1999), and the dermal condensate fails to develop in the absence of epithelial β -catenin (Huelsken *et al*, 2001).

Platelet-derived growth factor-A is expressed in the placode, whereas its receptor is expressed in the dermal condensate (Karlsson *et al*, 1999). Mice lacking platelet-derived growth factor-A have small dermal papillae, dermal sheath abnormalities, and thin hair, compared with wild-type siblings, suggesting that platelet-derived growth factor-A is also required for normal cross-talk between the follicle epithelium and its mesenchyme (Karlsson *et al*, 1999).

Another secreted protein present in the follicular placode that plays a major part in epithelial-mesenchymal signaling is Sonic hedgehog (SHH) (Fig 4B) (Bitgood and McMahon, 1995; Iseki *et al*, 1996). In mice lacking SHH, hair follicle formation is initiated

subsequent signaling from the epithelium to both epithelial and mesenchymal cells, regulating proliferation and further downgrowth of the follicular epithelium and development of the dermal papilla (St-Jacques *et al.*, 1998; Chiang *et al.*, 1999; Karlsson *et al.*, 1999). *Shh* expression is absent from the follicles of mice lacking epithelial β -catenin, indicating that *Shh* lies downstream of WNT signaling in hair follicle development (Huelsken *et al.*, 2001). Hair keratin genes are expressed in *Shh*^{-/-} hair follicles, indicating that SHH is not required for the initiation of hair shaft differentiation (St-Jacques *et al.*, 1998; Chiang *et al.*, 1999). The genes encoding Patched1 (PTC1), a receptor for SHH, and GLI1, a transcriptional effector of SHH signaling, are expressed in follicular epithelium and in the dermal condensate, consistent with the idea that SHH signals are required for the development of both components of the follicle (Dahmane *et al.*, 1997; Platt *et al.*, 1997; Ghali *et al.*, 1999).

Mutations in *PTC1* play a causative role in the etiology of the majority of human basal cell carcinomas (BCC) (Hahn *et al.*, 1996; Johnson *et al.*, 1996; Unden *et al.*, 1996), tumors that have several characteristics in common with immature hair follicles, including similar histology, ultrastructure, and patterns of keratin gene expression (Kumakiri and Hashimoto, 1978; Markey *et al.*, 1992; Jih *et al.*, 1999). These findings have led to intense interest in the regulation of the SHH signaling pathway in skin and hair, and recognition of the central part played by hair follicle signaling pathways in skin tumorigenesis (Gailani *et al.*, 1996; Johnson *et al.*, 1996). Identification of the downstream genes regulated by SHH signaling in hair follicles and BCC is of particular interest, as these are potential targets for novel BCC therapies. A *Wnt* family member, *Wnt5a*, is expressed in the dermal condensate of developing hair follicles, and is absent from these cells in *Shh*^{-/-} embryos, suggesting it as a target of SHH signaling in hair follicles (Reddy *et al.*, 2001). Interestingly, *Wnt5a* message is upregulated in a *Xenopus* model for BCC, and in human BCC samples (Bonifas *et al.*, 2001; Mullor *et al.*, 2001).

Tgfb2 has been suggested to be a target of SHH signaling in follicles as its expression domain is widened in response to ectopic expression of SHH in embryonic chick skin (Ting-Berrell and Chuong, 1996a); however, normal levels of *Tgfb2* message were detected in the hair follicles of mice lacking SHH (St-Jacques *et al.*, 1998). Loss of function mutations in the *Tgfb2* gene result in the development of reduced numbers of hair follicles (Foitzik *et al.*, 1999) (see above), indicating that, whatever its relationship to *Shh*, this gene plays critical roles in hair follicle morphogenesis. The neurotrophin receptors TrkC and p75 neurotrophin receptor (p75NTR) are expressed in developing hair follicles in the placode and dermal condensate, respectively, and loss of function mutations in the *TrkC* and p75NTR genes, as well as in the gene encoding neurotrophin 3 (NT-3), affect the rate of hair follicle morphogenesis, suggesting that neurotrophins may also be involved at early steps of this process (Botchkarev *et al.*, 1998, 1999a, b).

In summary, WNT and platelet-derived growth factor-A molecules are strong candidates as components of the first epithelial signal inducing formation of the dermal condensate. SHH acts later in follicular morphogenesis, is dependent on WNT signaling and is required for proliferation of follicular epithelium and development of the dermal condensate into a dermal papilla (Fig 3).

EPITHELIAL PROLIFERATION AND DOWNGROWTH: THE SECOND DERMAL SIGNAL

The "second dermal signal" regulating proliferation and downgrowth of the follicular epithelium is likely to be activated by SHH, as significant downgrowth fails to occur in SHH-null mice (St-Jacques *et al.*, 1998; Chiang *et al.*, 1999); however the nature of this signal is not known. One possible candidate is activin β A (Act β A), a secreted signaling molecule expressed in the dermal condensate (Feijen *et al.*, 1998) (see above and Barth, 1998). Mice lacking Act β A

pattern complementary to that of Act β A (Feijen *et al.*, 1994; Roberts and Barth, 1994), and mice lacking FS have thin, inappropriately oriented vibrissae due to defects in vibrissa follicle development (Matzuk *et al.*, 1995b). Hepatocyte growth factor/scatter factor is expressed in the dermal condensate and its receptor, Met, is expressed in the follicular epithelium (Lindner *et al.*, 2000). Mice overexpressing hepatocyte growth factor have increased numbers of hair follicles and accelerated hair follicle development, suggesting a possible role for this molecule in signaling between the follicular mesenchyme and epithelium (Lindner *et al.*, 2000).

A member of the Sry-type high mobility group box (SOX) transcription factor family, SOX18, is expressed in the dermal condensate, and mice homozygous for a semidominant mutation in this gene lack several subtypes of hair, suggesting a role for SOX family members in the development or function of the dermal condensate (Pennisi *et al.*, 2000a, b). Analyses of conditional mutant mice have revealed that expression of β 1 integrin in the epithelium is required for remodeling the basement membrane and follicular downgrowth (Brakebusch *et al.*, 2000; Raghavan *et al.*, 2000), and that α -catenin is also required for normal follicular morphogenesis (Vasioukhin *et al.*, 2001), revealing essential roles for adhesion molecules in this process.

DIFFERENTIATION OF THE INNER ROOT SHEATH AND HAIR SHAFT

As the hair follicle bulb appears (bulbous peg stage; Figs 1, 3), at least seven different epithelial cell layers constituting the components of the mature hair follicle are formed (Sperling, 1991). Recent studies have begun to reveal some information about the genes responsible for determining and maintaining the phenotypes of particular layers within the highly organized hair follicle structure. The genes encoding Notch1, a membrane protein involved in determining cell fate through cell-cell interactions and intracellular signal transduction, and its ligands Serrate1 and Serrate2, are expressed in matrix cells destined to form the inner root sheath and hair shaft (Kopan and Weintraub, 1993; Powell *et al.*, 1998; Favier *et al.*, 2000), and expression of activated Notch1 in hair shaft precursor cells under the control of a mouse hair keratin A1 promoter causes failure of differentiation of the hair shaft medulla (Lin *et al.*, 2000); this suggests that Notch1 is one of the factors responsible for controlling the phenotype of keratinocytes as they leave the bulb matrix and differentiate into specific cell types of the follicle.

In mature hair follicles, *Bmp4* is expressed in the dermal papilla and both *Bmp2* and *Bmp4* are expressed in hair shaft precursor cells (Wilson *et al.*, 1999; Kulesza *et al.*, 2000). Ectopic expression of *Bmp4* in the hair follicle outer root sheath in transgenic mice inhibits the proliferation of matrix cells and activates hair keratin gene expression in the outer root sheath (Blessing *et al.*, 1993), suggesting that BMP signaling is important for hair shaft differentiation. This hypothesis is supported by the phenotype of transgenic mice expressing the BMP inhibitor Noggin in matrix cells of the hair bulb under the control of an *Msx2* promoter. Expression of Noggin causes severe defects in differentiation of the hair shaft cortex and cuticle, loss of hair shaft differentiation markers, including trichohyalin and acidic hair keratins, and inhibition of the expression of several transcription factors normally expressed in mature follicles (see below) (Kulesza *et al.*, 2000).

Several lines of evidence suggest a role for WNT signaling in regulating differentiation of the hair shaft. First, expression of the WNT-responsive TOPGAL reporter gene appears in hair shaft precursor cells as they begin the process of terminal differentiation (DasGupta and Fuchs, 1999); these cells also express LEF1 protein (DasGupta and Fuchs, 1999), and Dishevelled 2 (Millar *et al.*, 1999), a component of the WNT signaling pathway, whereas adjacent cells express *Wnt3* (Millar *et al.*, 1999). Ectopic expression of *Wnt3*

hair shafts that are made appear poorly keratinized (Kratochwil *et al*, 1996). The regulatory regions of hair shaft keratin genes contain binding sites for LEF1 (Zhou *et al*, 1995). Mutation of the LEF1 site in the promoter of the wool keratin intermediate filament gene *K2.10* decreased promoter activity in the hair follicles of transgenic mice, suggesting that WNT signaling might regulate expression of hair shaft intermediate filament genes (Dunn *et al*, 1998); however, this has yet to be proven. Mice lacking the putative transcription factor MOVO1 also show hair shaft defects, including kinks and intercellular splits (Dai *et al*, 1998). Interestingly, the *Drosophila* homolog of *mOvo1* controls epidermal differentiation, and is transcriptionally repressed by a dTCF/armadillo complex (analogous to LEF/β-catenin) in response to WNT signaling (Payre *et al*, 1999).

Analyses of naturally occurring or induced mouse mutants have identified roles for several other transcription factors in the control of hair shaft differentiation, including a homeobox protein HOXC13 (Godwin and Capecchi, 1998), which may regulate expression of certain keratin-associated protein genes (Tkatchenko *et al*, 2001), and a winged-helix/forkhead transcription factor FOXN1 (formerly WHN) (Nehls *et al*, 1994; Segre *et al*, 1995; Brissette *et al*, 1996), which is mutated in nude mice and regulates expression of an acidic hair keratin gene (Meier *et al*, 1999). A case of two sisters carrying a mutated *FOXN1* gene and displaying hair, nail, and immune defects has been reported, indicating conservation of the role of FOXN1 in mouse and humans (Frank *et al*, 1999). The genes encoding the *MSX1* and *MSX2* transcription factors are coexpressed in hair follicle matrix cells during anagen, suggesting they may play overlapping roles (Satokata *et al*, 2000). In mice ectopically expressing *Noggin* in the hair matrix, expression of the *HoxC13*, *Foxn1*, *Msx1*, and *Msx2* genes is inhibited, indicating that activation of these genes requires BMP signaling (Kulessa *et al*, 2000). A more detailed analysis of how these various factors interact with each other and with other growth and transcription factors expressed in follicles to produce the normal variety of hair types in humans and other mammals remains a fascinating area for future study.

POLARITY OF THE HAIR FOLLICLE

Hair follicles grow at an angle to the skin, pointing from anterior to posterior, and regulation of this polarity may be controlled in part by *Shh*, which shows an asymmetric pattern of expression in hair and feather follicles (Millar, 1997; Gat *et al*, 1998; Morgan *et al*, 1998). In support of this idea, overexpression of *Shh* in embryonic chick skin causes the formation of enlarged feather buds that have lost their normal orientation (Ting-Berreth and Chuong, 1996a). Perturbations of the WNT signaling pathway, including overexpression of *Wnt7a* or stabilized β-catenin in embryonic chick skin and overexpression of *Lef1* or stabilized β-catenin in transgenic mouse skin result in altered follicular polarity (Zhou *et al*, 1995; Gat *et al*, 1998; Noramly *et al*, 1999; Widelitz *et al*, 1999, 2000), and can induce symmetrical expression of *Shh* in the follicle (Gat *et al*, 1998), suggesting that WNT signals may lie upstream of *Shh* in controlling polarity.

CONTROL OF HAIR FOLLICLE SHAPE

Mutations in the mouse genes encoding TGF-α, the TGF-α receptor (epidermal growth factor receptor), and the transcription factor ETS2, cause altered hair follicle architecture and wavy hair, indicating that these factors play critical roles in governing the shape of hair follicles (Luetke *et al*, 1993; Mann *et al*, 1993; Luetke *et al*, 1994; Yamamoto *et al*, 1998). Several other mutations in a wavy coat (*Wa*) (Kojima *et al*, 2000) cause wavy

THE HAIR GROWTH CYCLE: SIMILARITIES TO MORPHOGENESIS

During postnatal life, hair follicles undergo successive cycles of growth (anagen), regression (catagen), and rest (telogen) (Dry, 1926). Like hair follicle morphogenesis, the initiation of a new growth phase and the subsequent downgrowth, proliferation, and differentiation of the follicle require signaling between follicular dermal and epithelial cells (Oliver and Jahoda, 1988), and recent molecular analyses suggest that signaling pathways active during hair follicle morphogenesis are reutilized in postnatal, cycling hair. At anagen onset *Wnt10b* mRNA localizes to epithelial cells adjacent to the dermal papilla (Reddy *et al*, 2001) and the WNT-responsive TOPGAL reporter gene is activated in the hair follicle bulge, the location of follicle stem cells (DasGupta and Fuchs, 1999). Onset of the first postnatal anagen fails to occur in mice that progressively lose β-catenin from the epidermis and follicular epithelium, indicating that activation of WNT signaling in the epithelium is necessary for this process (Huelsken *et al*, 2001). Isolated dermal papilla cells cultured in the presence of certain WNT proteins maintain their hair follicle-inducing properties, which otherwise are lost after several passages in culture (Kishimoto *et al*, 2000), suggesting that, as in morphogenesis, WNTs play an important part in conveying inductive signals between the follicular epithelium and mesenchyme of postnatal follicles. *SHH* may also recapitulate some of its morphogenetic functions during anagen. While not required for anagen onset, *SHH* is necessary for subsequent events of anagen, including proliferation of epithelial cells and downgrowth of the follicle into the dermis (Wang *et al*, 2000), and ectopic expression of *Shh* is capable of inducing resting follicles to enter a growth phase (Sato *et al*, 1999). A plethora of other molecules have been either suggested or proven to play roles in controlling postnatal hair growth cycles, some of which, such as FGF5 and hairless (Cachon-Gonzalez *et al*, 1994; Hebert *et al*, 1994; Ahmad *et al*, 1998), are not required for morphogenesis (reviewed in Cotsarelis and Millar, 2001; Stenn and Paus, 2001).

CLINICAL IMPLICATIONS: WHAT DOES THE FUTURE HOLD?

Knowledge of the molecules and pathways that regulate hair follicle formation and hair growth will be essential for achieving therapeutic goals for hair loss conditions, including the ability: (i) to create new hair follicles; (ii) to change the characteristics (such as size or shape) of existing follicles; and (iii) to alter hair growth in existing follicles, as well as aiding in the search for target antigens important in the etiology of alopecia areata and scarring alopecia (reviewed in Cotsarelis and Millar, 2001). Inhibiting the activities of molecules important for hair follicle formation and cyclical growth may also ultimately provide us with means for treating hirsutism. While we are far from achieving these goals, the identification of molecules such as β-catenin and *SHH* that are capable of inducing the formation of new hair follicles provides us with potential strategies for treating conditions in which follicles have been completely destroyed. *SHH* is also able to induce anagen (Sato *et al*, 1999), a property that may be useful for treating a variety of conditions. In designing therapeutic approaches, however, it must be borne in mind that these molecules can also cause the formation of tumors such as pilomatricoma and BCC (Oro and Scott, 1998; Chan *et al*, 1999). It will therefore be important to ensure, by controlling the dose, or modifying the properties of these molecules, that one can induce follicle formation without producing harmful side-effects. The development of methods for delivering genes to hair follicles is an area of active research that will clearly be critical for achieving therapeutic goals (Alexeev *et al*, 2000; Li and Hoffman, 1995; Fan *et al*, 1999; Domashenko *et al*, 2000; Cotsarelis and Millar, 2001).

Although striking advances have been made recently in our

hair follicles in different regions of the body have different properties, including size, duration of the anagen growth phase, and sensitivity to androgens. The mechanisms by which testosterone impacts on signaling in the hair follicle to achieve its effects are also not understood, an area of importance for the development of novel therapies for androgenetic alopecia. The next few years are likely to bring us answers to some of these outstanding questions, and perhaps the beginnings of therapeutic applications for our recently acquired knowledge.

The author thanks Dr Andrzej Dlugosz for the SHH pathway diagram, Dr George Cotsarelis for comments on the manuscript, Drs Alla Domashenko and George Cotsarelis for samples of human scalp skin, and Dorothy Campbell for histologic preparation. The author is a recipient of a Dermatology Foundation/Dermik Laboratories Career Development Award, and this work was also supported by the National Alopecia Areata Foundation and the National Institute of Arthritis and Musculoskeletal and Skin Diseases.

REFERENCES

Ahmad W, Faiyaz ul Haque M, Brancolini V, et al: Alopecia universalis associated with a mutation in the human hairless gene. *Science* 279:720–724, 1998

Alexeev V, Igoucheva O, Domashenko A, Cotsarelis G, Yoon K: Localized in vivo genotypic and phenotypic correction of the albino mutation in skin by RNA-DNA oligonucleotide. *Nat Biotechnol* 18:43–47, 2000

Aszterbaum M, Epstein J, Oro A, et al: Ultraviolet and ionizing radiation enhance the growth of BCCs and trichoblastomas in patched heterozygous knockout mice. *Nat Med* 5:1285–1291, 1999

Barker N, Huls G, Korinek V, Clevers H: Restricted high level expression of Tcf-4 protein in intestinal and mammary gland epithelium. *Am J Pathol* 154:29–35, 1999

Barsh G: Of ancient tales and hairless tails. *Nat Genet* 22:315–316, 1999

Bitgood MJ, McMahon AP: Hedgehog and Bmp genes are coexpressed at many diverse sites of cell–cell interaction in the mouse embryo. *Dev Biol* 172:126–138, 1995

Blessing M, Nanney LB, King LE, Jones CM, Hogan BL: Transgenic mice as a model to study the role of TGF- β -related molecules in hair follicles. *Genes Dev* 7:204–215, 1993

Bonifas JM, Pennypacker S, Chuang PT, et al: Activation of expression of hedgehog target genes in basal cell carcinomas. *J Invest Dermatol* 116:739–742, 2001

Botchkarev VA, Botchkarev NV, Albers KM, van der Veen C, Lewin GR, Paus R: Neurotrophin-3 involvement in the regulation of hair follicle morphogenesis. *J Invest Dermatol* 111:279–285, 1998

Botchkarev VA, Botchkareva NV, Roth W, et al: Noggin is a mesenchymally derived stimulator of hair-follicle induction. *Nat Cell Biol* 1:158–164, 1999

Botchkareva NV, Botchkarev VA, Chen LH, Lindner G, Paus R: A role for p75 neurotrophin receptor in the control of hair follicle morphogenesis. *Dev Biol* 216:135–153, 1999a

Botchkareva NV, Botchkarev VA, Metz M, Silos-Santiago I, Paus R: Retardation of hair follicle development by the deletion of TrkB, high-affinity neurotrophin-3 receptor. *J Invest Dermatol* 113:425–427, 1999b

Brakebusch C, Gross R, Quondamatteo F, et al: Skin and hair follicle integrity is crucially dependent on beta 1 integrin expression on keratinocytes. *EMBO J* 19:3990–4003, 2000

Brissette JL, Li J, Kamimura J, Lee D, Dotto GP: The product of the mouse nude locus, Whn, regulates the balance between epithelial cell growth and differentiation. *Genes Dev* 10:2212–2221, 1996

Cachon-Gonzalez MB, Fenner S, Coffin JM, Moran C, Best S, Stoye JP: Structure and expression of the hairless gene of mice. *Proc Natl Acad Sci USA* 91:7717–7721, 1994

Chan EF, Gat U, McNiff JM, Fuchs E: A common human skin tumour is caused by activating mutations in beta-catenin. *Nat Genet* 21:410–413, 1999

Chiang C, Swan RZ, Grachchouk M, et al: Essential role for Sonic hedgehog during hair follicle morphogenesis. *Dev Biol* 205:1–9, 1999

Chuong CM, Widellitz RB, Ting-Berrett S, Jiang TX: Early events during avian skin appendage regeneration: dependence on epithelial–mesenchymal interaction and order of molecular reappearance. *J Invest Dermatol* 107:639–646, 1996

Cotsarelis G: The hair follicle: dying for attention. *Am J Pathol* 151:1505–1509, 1997

Cotsarelis G, Millar SE: Towards a molecular understanding of hair loss and its treatment. *Trends Mol Med* 7:293–301, 2001

Cotsarelis G, Sun TT, Lavker RM: Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. *Cell* 61:1329–1337, 1990

Crowe R, Niswander L: Disruption of scale development by Delta-1 misexpression. *Dev Biol* 195:70–74, 1998

transcription factor Gli1 and the Sonic hedgehog signalling pathway in skin tumours. *Nature* 389:876–881, 1997

Dai X, Schonbaum C, Degenstein L, Bai W, Mahowald A, Fuchs E: The ovo gene required for cuticle formation and oogenesis in flies is involved in hair formation and spermatogenesis in mice. *Genes Dev* 12:3452–3463, 1998

DasGupta R, Fuchs E: Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. *Development* 126:4557–4568, 1999

Domashenko A, Gupta S, Cotsarelis G: Efficient delivery of transgenes to human hair follicle progenitor cells using topical lipoplex. *Nat Biotechnol* 18:420–423, 2000

Dry FW: The coat of the mouse (mus musculus). *J Genet* 16:287–340, 1926

Dunn SM, Keough RA, Rogers GE, Powell BC: Regulation of a hair follicle keratin intermediate filament gene promoter. *J Cell Sci* 111:3487–3496, 1998

Fan H, Lin Q, Morrissey GR, Khavari PA: Immunization via hair follicles by topical application of naked DNA to normal skin. *Nat Biotechnol* 17:870–872, 1999

Favier B, Fliniaux I, Thelu J, Viallet JP, Demarchez M, Jahoda CA, Dhouailly D: Localisation of members of the notch system and the differentiation of vibrissa hair follicles. receptors, ligands, and fringe modulators. *Dev Dyn* 218:426–437, 2000

Feijen A, Goumans MJ, van den Eijnden-van Raaij AJ: Expression of activin subunits, activin receptors and follistatin in postimplantation mouse embryos suggests specific developmental functions for different activins. *Development* 120:3621–3637, 1994

Ferguson BM, Brockdorff N, Formstone E, Ngyuen T, Kronmiller JE, Zonana J: Cloning of Tabby, the murine homolog of the human EDA gene: evidence for a membrane-associated protein with a short collagenous domain. *Hum Mol Genet* 6:1589–1594, 1997

Foitzik K, Paus R, Doetschman T, Dotto GP: The TGF- β 2 isoform is both a required and sufficient inducer of murine hair follicle morphogenesis. *Dev Biol* 212:278–289, 1999

Frank J, Pignata C, Panteleyev AA, et al: Exposing the human nude phenotype. *Nature* 398:473–474, 1999

Gailani MR, Stahle-Backdahl M, Leffell DJ, et al: The role of the human homologue of *Drosophila* patched in sporadic basal cell carcinomas. *Nat Genet* 14:78–81, 1996

Gat U, DasGupta R, Degenstein L, Fuchs E: De novo hair follicle morphogenesis and hair tumors in mice expressing a truncated beta-catenin in skin. *Cell* 95:605–614, 1998

van Genderen C, Okamura RM, Farinas I, Quo RG, Parslow TG, Bruhn L, Grosschedl R: Development of several organs that require inductive epithelial–mesenchymal interactions is impaired in Lef-1-deficient mice. *Genes Dev* 8:2691–2703, 1994

Ghali L, Wong ST, Green J, Tidman N, Quinn AG: Gli1 protein is expressed in basal cell carcinomas, outer root sheath keratinocytes and a subpopulation of mesenchymal cells in normal human skin. *J Invest Dermatol* 113:595–599, 1999

Godwin AR, Capecchi MR: Hoxc13 mutant mice lack external hair. *Genes Dev* 12:11–20, 1998

Hahn H, Wicking C, Zaphiropoulos PG, et al: Mutations of the human homolog of *Drosophila* patched in the nevoid basal cell carcinoma syndrome. *Cell* 85:841–851, 1996

Hamilton J: Male hormone stimulation is a prerequisite and an incitant in common baldness. *Am J Anat* 71:451–480, 1942

Hardy MH: The secret life of the hair follicle. *Trends Genet* 8:55–60, 1992

Headon DJ, Overbeek PA: Involvement of a novel Tnf receptor homologue in hair follicle induction [see comments]. *Nat Genet* 22:370–374, 1999

Hebert JM, Rosenquist T, Gotz J, Martin GR: FGF5 as a regulator of the hair growth cycle: evidence from targeted and spontaneous mutations. *Cell* 78:1017–1025, 1994

Holbrook KA, Smith LT, Kaplan ED, Minami SA, Hebert GP, Underwood RA: Expression of morphogens during human follicle development in vivo and a model for studying follicle morphogenesis *in vitro*. *J Invest Dermatol* 101:395–495, 1993

Huelsken J, Vogel R, Erdmann B, Cotsarelis G, Birchmeier W: Beta-catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. *Cell* 105:533–545, 2001

Iseki S, Araga A, Ohuchi H, Nohno T, Yoshioka H, Hayashi F, Noji S: Sonic hedgehog is expressed in epithelial cells during development of whisker, hair, and tooth. *Biochem Biophys Res Commun* 218:688–693, 1996

Jiang TX, Jung HS, Widellitz RB, Chuong CM: Self-organization of periodic patterns by dissociated feather mesenchymal cells and the regulation of size, number and spacing of primordia. *Development* 126:4997–5009, 1999

Jih DM, Lyle S, Elenitsas R, Elder DE, Cotsarelis G: Cytokeratin 15 expression in trichoeptilomas and a subset of basal cell carcinomas suggests they originate from hair follicle stem cells. *J Cutan Pathol* 26:113–118, 1999

Johnson RL, Rothman AL, Xie J, et al: Human homolog of patched, a candidate gene for the basal cell nevus syndrome. *Science* 272:1668–1671, 1996

Jung HS, Francis-West PH, Widellitz RB, et al: Local inhibitory action of BMP and their relationships with activators in feather formation: implications for periodic patterning. *Dev Biol* 196:11–23, 1998

Kaplan ED, Holbrook KA: Dynamic expression patterns of tenascin, proteoglycans, and cell adhesion molecules during human hair follicle morphogenesis. *Dev Dyn* 199:141–155, 1994

ectodermal dysplasia is caused by mutation in a novel transmembrane protein. *Nat Genet* 13:409–416, 1996

Kishimoto J, Burgeson RE, Morgan BA: Wnt signaling maintains the hair-inducing activity of the dermal papilla. *Genes Dev* 14:1181–1185, 2000

Kojima T, Morikawa Y, Copeland NG, Gilbert DJ, Jenkins NA, Senba E, Kitamura T: TROY, a newly identified member of the tumor necrosis factor receptor superfamily, exhibits a homology with Edar and is expressed in embryonic skin and hair follicles. *J Biol Chem* 275:20742–20747, 2000

Kopan R, Weintraub H: Mouse notch: expression in hair follicles correlates with cell fate determination. *J Cell Biol* 121:631–641, 1995

Korinek V, Barker N, Willert K, et al: Two members of the Tcf family implicated in Wnt/beta-catenin signaling during embryogenesis in the mouse. *Mol Cell Biol* 18:1248–1256, 1998

Kratochwil K, Dull M, Farinas I, Galceran J, Grosschedl R: Lef1 expression is activated by BMP-4 and regulates inductive tissue interactions in tooth and hair development. *Genes Dev* 10:1382–1394, 1996

Kulessa H, Turk G, Hogan BL: Inhibition of Bmp signaling affects growth and differentiation in the anagen hair follicle. *EMBO J* 19:6664–6674, 2000

Kumakiri M, Hashimoto K: Ultrastructural resemblance of basal cell epithelioma to primary epithelial germ. *J Cutan Pathol* 5:53–67, 1978

Lee YJ, Swencki B, Shoichet S, Shvidasani RA: A possible role for the high mobility group box transcription factor Tcf-4 in vertebrate gut epithelial cell differentiation. *J Biol Chem* 274:1566–1572, 1999

Li L, Hoffman RM: The feasibility of targeted selective gene therapy of the hair follicle. *Nat Med* 1:705–706, 1995

Lin MH, Leimeister C, Gessler M, Kopan R: Activation of the Notch pathway in the hair cortex leads to aberrant differentiation of the adjacent hair-shaft layers. *Development* 127:2421–2422, 2000

Lindner G, Menrad A, Gherardi E, et al: Involvement of hepatocyte growth factor/scatter factor and met receptor signaling in hair follicle morphogenesis and cycling. *FASEB J* 14:319–332, 2000

Luettek NC, Qiu TH, Peiffer RL, Oliver P, Smithies O, Lee DC: TGF alpha deficiency results in hair follicle and eye abnormalities in targeted and waved-1 mice. *Cell* 73:263–278, 1993

Luettek NC, Phillips HK, Qiu TH, Copeland NG, Earp HS, Jenkins NA, Lee DC: The mouse waved-2 phenotype results from a point mutation in the EGF receptor tyrosine kinase. *Genes Dev* 8:399–413, 1994

Lyle S, Christofidou-Solomidou M, Liu Y, Elder DE, Albelda S, Cotsarelis G: The C8/144B monoclonal antibody recognizes cytokeratin 15 and defines the location of human hair follicle stem cells. *J Cell Sci* 111:3179–3188, 1998

Mann GB, Fowler KJ, Gabriel A, Nice EC, Williams RL, Dunn AR: Mice with a null mutation of the TGF alpha gene have abnormal skin architecture, wavy hair, and curly whiskers and often develop corneal inflammation. *Cell* 73:249–261, 1993

Markey AC, Lane EB, Macdonald DM, Leigh IM: Keratin expression in basal cell carcinomas. *Br J Dermatol* 126:154–160, 1992

Matzuk MM, Kumar TR, Vassalli A, Bickenbach JR, Roop DR, Jaenisch R, Bradley A: Functional analysis of activins during mammalian development. *Nature* 374:354–356, 1995a

Matzuk MM, Lu N, Vogel H, Sellheyer K, Roop DR, Bradley A: Multiple defects and perinatal death in mice deficient in follistatin. *Nature* 374:360–363, 1995b

Meier N, Dear TN, Boehm T: Whn and mHa3 are components of the genetic hierarchy controlling hair follicle differentiation. *Mech Dev* 89:215–221, 1999

Merino R, Rodriguez-Leon J, Macias D, Ganan Y, Economides AN, Hurle JM: The BMP antagonist Gremlin regulates outgrowth, chondrogenesis and programmed cell death in the developing limb. *Development* 126:5515–5522, 1999

Merrill BJ, Gat U, DasGupta R, Fuchs E: Tcf3 and Lef1 regulate lineage differentiation of multipotent stem cells in skin. *Genes Dev* 15:1688–1705, 2001

Mikkola ML, Pispa J, Pekkanen M, Paulin L, Nieminen P, Kere J, Thesleff I: Ectodysplasin, a protein required for epithelial morphogenesis, is a novel TNF homologue and promotes cell–matrix adhesion. *Mech Dev* 88:133–146, 1999

Millar SE: The role of patterning genes in epidermal differentiation. In: Cowin P, Klymkowsky M (eds). *Cytoskeletal–Membrane Interactions and Signal Transduction*. Austin, TX: Landes Bioscience, 1997, pp 87–102

Millar SE, Willert K, Salinas PC, Roelink H, Nusse R, Sussman DJ, Barsh GS: WNT signaling in the control of hair growth and structure. *Dev Biol* 207:133–149, 1999

Monreal AW, Ferguson BM, Headon DJ, Street SL, Overbeek PA, Zonana J: Mutations in the human homologue of mouse dl cause autosomal recessive and dominant hypohidrotic ectodermal dysplasia. *Nat Genet* 22:366–369, 1999

Morgan BA, Orkin RW, Noramly S, Perez A: Stage-specific effects of sonic hedgehog expression in the epidermis. *Dev Biol* 201:1–12, 1998

Mullor JL, Dahmane N, Sun T, i Altaba AR: Wnt signals are targets and mediators of Gli function. *Curr Biol* 11:769–773, 2001

Nehls M, Pfeifer D, Schorpp M, Hedrich H, Boehm T: New member of the winged-helix protein family disrupted in mouse and rat nude mutations. *Nature* 372:103–107, 1994

Noramly S, Morgan BA: BMP mediate lateral inhibition at successive stages in feather tract development. *Development* 125:3775–3787, 1998

Noramly S, Freeman A, Morgan BA: Beta-catenin signaling can initiate feather bud development. *Development* 126:3509–3521, 1999

antagonists, gremlin and Follistatin, during development of the chick feather bud. *Mech Dev* 100:331–333, 2001

Oliver RF, Jahoda CA: Dermal–epidermal interactions. *Clin Dermatol* 6:74–82, 1988

Olivera-Martinez I, Thelu J, Teillet MA, Dhouailly D: Dorsal dermis development depends on a signal from the dorsal neural tube, which can be substituted by Wnt-1. *Mech Dev* 100:233–244, 2001

Oro AE, Scott MP: Splitting hairs: dissecting roles of signaling systems in epidermal development. *Cell* 95:575–578, 1998

Oshima H, Rochat A, Kedzia C, Kobayashi K, Barrandon Y: Morphogenesis and renewal of hair follicles from adult multipotent stem cells. *Cell* 104:233–245, 2001

Patel K, Makarenkova H, Jung HS: The role of long range, local and direct signalling molecules during chick feather bud development involving the BMP, follistatin and the Eph receptor tyrosine kinase Eph-A4. *Mech Dev* 86:51–62, 1999

Payre F, Vincent A, Carreno S: ovo/svb integrates Wingless and DER pathways to control epidermis differentiation. *Nature* 400:271–275, 1999

Pennisi D, Bowles J, Nagy A, Muscat G, Koopman P: Mice null for sox18 are viable and display a mild coat defect. *Mol Cell Biol* 20:9331–9336, 2000a

Pennisi D, Gardner J, Chambers D, et al: Mutations in Sox18 underlie cardiovascular and hair follicle defects in ragged mice. *Nat Genet* 24:434–437, 2000b

Platt KA, Michaud J, Joyner AL: Expression of the mouse Gli and Ptc genes is adjacent to embryonic sources of hedgehog signals suggesting a conservation of pathways between flies and mice. *Mech Dev* 62:121–135, 1997

Powell BC, Passmore EA, Nesci A, Dunn SM: The Notch signalling pathway in hair growth. *Mech Dev* 78:189–192, 1998

Raghavan S, Bauer C, Mundschauf G, Li Q, Fuchs E: Conditional ablation of beta1 integrin in skin. Severe defects in epidermal proliferation, basement membrane formation, and hair follicle invagination. *J Cell Biol* 150:1149–1160, 2000

Reddy S, Andl T, Bagarsa A, Lu MM, Epstein DJ, Morrissey EE, Millar SE: Characterization of Wnt gene expression in developing and postnatal hair follicles and identification of Wnt5a as a target of Sonic hedgehog in hair follicle morphogenesis. *Mech Dev* 107:69–82, 2001

Revest JM, Spencer-Dene B, Kerr L, De Moerloose L, Rosewell I, Dickson C: Fibroblast growth factor receptor 2-IIIb acts upstream of Shh and Fgf4 and is required for limb bud maintenance but not for the induction of Fgf8, Fgf10, Mx1, or Bmp4. *Dev Biol* 231:47–62, 2001

Reynolds AJ, Lawrence C, Cserhalmi-Friedman PB, Christiano AM, Jahoda CA: Trans-gender induction of hair follicles. *Nature* 402:33–34, 1999

Roberts VJ, Barth SL: Expression of messenger ribonucleic acids encoding the inhibin/activin system during mid- and late-gestation rat embryogenesis. *Endocrinology* 134:914–923, 1994

Sato N, Leopold PL, Crystal RG: Induction of the hair growth phase in postnatal mice by localized transient expression of Sonic hedgehog. *J Clin Invest* 104:855–864, 1999

Satokata I, Ma L, Ohshima H, et al: Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ formation. *Nat Genet* 24:391–395, 2000

Segre JA, Nemhauser JL, Taylor BA, Nadeau JH, Lander ES: Positional cloning of the nude locus: genetic, physical, and transcription maps of the region and mutations in the mouse and rat. *Genomics* 28:549–559, 1995

Slack J: *From Egg to Embryo*. Cambridge: Cambridge University Press, 1991

Song H, Wang Y, Goetinck PF: Fibroblast growth factor 2 can replace ectodermal signaling for feather development. *Proc Natl Acad Sci USA* 93:10246–10249, 1996

Sperling LC: Hair anatomy for the clinician. *J Am Acad Dermatol* 25:1–17, 1991

Srivastava AK, Pispa J, Hartung AJ, et al: The Tabby phenotype is caused by mutation in a mouse homologue of the EDA gene that reveals novel mouse and human exons and encodes a protein (ectodysplasin-A) with collagenous domains. *Proc Natl Acad Sci USA* 94:13069–13074, 1997

Stenn KS, Paus R: Controls of hair follicle cycling. *Physiol Rev* 81:449–494, 2001

St-Jacques B, Dassule HR, Karavanova I, et al: Sonic hedgehog signaling is essential for hair development. *Curr Biol* 8:1058–1068, 1998

Taylor G, Lehrer MS, Jensen PJ, Sun TT, Lavker RM: Involvement of follicular stem cells in forming not only the follicle but also the epidermis. *Cell* 102:451–461, 2000

Ting-Berrett SA, Chuong C-M: Sonic hedgehog in feather morphogenesis: induction of mesenchymal condensation and association with cell death. *Dev Dyn* 207:157–170, 1996a

Ting-Berrett SA, Chuong C-M: Local delivery of TGF beta2 can substitute for placode epithelium to induce mesenchymal condensation during skin appendage morphogenesis. *Dev Biol* 179:347–359, 1996b

Tkatchenko AV, Visconti RP, Shang L, et al: Overexpression of Hoxc13 in differentiating keratinocytes results in downregulation of a novel hair keratin gene cluster and alopecia. *Development* 128:1547–1558, 2001

Uden AB, Holmberg E, Lundh-Rozell B, Stahle-Backdahl M, Zaphiropoulos PG, Toffgard R, Vorechovsky I: Mutations in the human homolog of *Drosophila* patched (PTCH) in basal cell carcinomas and the Gorlin syndrome: different in vivo mechanisms of PTCH inactivation. *Cancer Res* 56:4562–4565, 1996

Vasioukhin V, Bauer C, Degenstein L, Wise B, Fuchs E: Hyperproliferation and defects in epithelial polarity upon conditional ablation of alpha-catenin in skin. *Cell* 104:605–617, 2001

Viallet JP, Prin F, Olivera-Martinez I, Hirsinger E, Pourquie O, Dhouailly D: Chick Delta-1 gene expression and the formation of the feather primordia. *Mech Dev*

VOL. 118, NO. 2 FEBRUARY 2002

MECHANISMS OF HAIR FOLLICLE DEVELOPMENT 225

Widelitz RB, Jiang TX, Noveen A, Chen CW, Chuong CM: FGF induces new feather buds from developing avian skin. *J Invest Dermatol* 107:797–803, 1996

Widelitz RB, Jiang TX, Chen CW, Stott NS, Chuong CM: Wnt-7a in feather morphogenesis: involvement of anterior-posterior asymmetry and proximal-distal elongation demonstrated with an in vitro reconstitution model. *Development* 126:2577–2587, 1999

Widelitz RB, Jiang TX, Lu J, Chuong CM: Beta-catenin in epithelial morphogenesis: conversion of part of avian foot scales into feather buds with a mutated beta-catenin. *Dev Biol* 219:98–114, 2000

Wilson C, Cotsarelis G, Wei ZG, et al: Cells within the bulge region of mouse hair follicle transiently proliferate during early anagen: heterogeneity and functional differences of various hair cycles. *Differentiation* 55:127–136, 1994

Wilson N, Hynd PI, Powell BC: The role of BMP-2 and BMP-4 in follicle initiation and the murine hair cycle. *Exp Dermatol* 8:367–368, 1999

Wodarz A, Nusse R: Mechanisms of Wnt signaling in development. *Annu Rev Cell Dev Biol* 14:59–88, 1998

Yamamoto H, Flannery ML, Kupriyanov S, et al: Defective trophoblast function in mice with a targeted mutation of Ets2. *Genes Dev* 12:1315–1326, 1998

Yan M, Wang LC, Hymowitz SG, et al: Two-amino acid molecular switch in an epithelial morphogen that regulates binding to two distinct receptors. *Science* 290:523–527, 2000

Zhou P, Byrne C, Jacobs J, Fuchs E: Lymphoid enhancer factor 1 directs hair follicle patterning and epithelial cell fate. *Genes Dev* 9:700–713, 1995

