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The largest organ in the body, the skin provides 
protection against environmental insults and 
dehydration, and is an important gateway for sensory 

input. In addition to forming an environmental barrier, 
the skin has evolved to produce an amazing variety of 
appendages, including scales, feathers, hair follicles, sweat 
glands, and mammary glands (Figure 1). These organs 
arise from embryonic skin progenitor cells and endow 
wide-ranging properties, including regulation of body 
temperature, and the ability to fl y, nurse young, and attract 
mates. As the body’s primary frontier, the skin is both 
vulnerable to disease, such as melanoma, and a source of 
therapeutic promise, harboring accessible stem cells (SCs) 
that can regenerate skin and potentially other organs.

Mammalian skin contains three major cell types: 
epithelial cells that form a stratifi ed epidermis containing 
specialized intermediate fi lament proteins called keratins; 
mesenchymal cells that form the underlying dermis and, 
together with epithelial cells, contribute to hair follicles and 
other appendages; and melanocytes that provide the skin 
and hair follicles with pigmentation. In addition, the skin is 
highly innervated, and contains populations of specialized 
cells including dentritic Langerhans cells (a type of antigen 
presenting cell), Merkel mechanoreceptor cells (which 
form complexes with sensory axons), and mast cells (which 
produce histamine). These different cell types have diverse 
origins, and undergo extensive interactions, migration, 
proliferation, and differentiation during embryonic 
development. 

Morphogenesis is controlled by a relatively small number 
of key intercellular signaling pathways that occur sequentially 
and in specifi c combinatorial fashions. Activation of these 
pathways is directed by secreted ligands, including members 
of the WNT, fi broblast growth factor, tumor necrosis factor, 
and Hedgehog families, and bone morphogenetic protein 
(BMP) and other transforming growth factor superfamily 
members, which act over relatively short distances and bind 
to specifi c receptor proteins on neighboring cells to regulate 
cell shape, size, adhesion, polarity, movements, proliferation, 
and transcriptional activity. The molecular events underlying 
skin development in mammals have been studied using a 
variety of systems and techniques. These include analysis of 
human genetic syndromes and spontaneously occurring and 
induced mouse mutants, production of transgenic and gene-
targeted mouse models, in vitro culture of rodent and human 
skin cells, and grafting of human or rodent skin to immune-
defi cient mice.

Epidermal Origins

The epidermis originates from the outer layer of the 
embryo, the surface ectoderm. BMPs activate the epidermal 
differentiation program and induce the expression of 
keratin proteins via several known transcription factors 
[1,2]. The surface ectoderm proliferates and migrates from 
the dorsal midline to cover the embryo [3], and persists 
as a simple epithelium until approximately embryonic 
day (E) 9.5 of mouse embryogenesis. At this stage basal 
cells begin to express keratins 5 and 14, presaging 
epidermal stratifi cation [2], which requires the activity of 
a key epidermal transcription factor that also regulates 
epidermal fate, proliferation, and adhesion [4–9]. By 
birth, the epidermis consists of a proliferative basal layer 
that differentiates to form suprabasal layers, and an outer, 
“cornifi ed,” enucleated shell that constitutes the epidermal 
barrier and is continuously shed and replenished. Epidermal 
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Figure 1. Histological and Schematic Depictions of Mature Skin
(A) Hematoxylin/eosin-stained section of mouse skin at postnatal day 
28, showing hair follicles in the anagen growth phase; major layers of the 
skin are indicated. 
(B) Schematic depiction of postnatal skin showing a hair follicle in the 
growth phase. Biological processes occurring in the skin are listed and SC 
locations are indicated. Dark blue arrows indicate the movements of stem 
and matrix cell progeny; pale blue arrows indicate SC self-renewal. Pink, 
epidermis and hair follicle outer root sheath; yellow, inner root sheath; 
green, matrix; red, hair follicle DP; light brown, hair shaft precursors; 
darker brown, hair shaft; violet circles, SCs; black ovals, dermal fi broblasts.
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renewal continues throughout life, suggesting that this tissue 
harbors an SC population; maintenance of epidermal SCs in 
vivo has been recently shown to require the Rho guanosine 
triphosphatase Rac1 [10].

Dermal Origins

The dermis of the skin consists of loosely packed fi broblasts 
and has a remarkable variety of embryonic origins. 
Fate mapping of mammalian dermis, which traces the 
developmental path of dermal cells, has been achieved 
by introducing artifi cial genes into mice. Specifi cally, the 
bacterial Cre recombinase enzyme is introduced under the 
control of a promoter that is active in a particular embryonic 
region, in this case either lateral plate mesoderm or neural 
crest. This transgene is combined with a Cre-activatable lacZ 
reporter gene, resulting in lacZ expression in Cre-expressing 
embryonic cells and all of their descendants. This allows 
tracking of the fates of these descendants by X-gal staining to 
detect activity of the β-galactosidase enzyme encoded by lacZ. 
These experiments showed that the lateral plate mesoderm 
gives rise to ventral trunk dermis, while head dermis arises, 
at least in part, from neural crest, a transient population 
of migratory cells derived from the neural plate [11–14]. 
While fate mapping of dorsal trunk dermis in mammalian 
embryos has not yet been described, analysis of chick–quail 
chimeras revealed that in avian embryos the dorsal dermis 
arises from the dorsal regions of somites [15,16]. Embryonic 
dermal fi broblasts from different body regions have different 
inductive properties [17–19] and show position-specifi c 
differences in gene expression, even in the adult [20]. The 
molecular controls of mammalian dermal development 
remain relatively unexplored.

Pigmentation of the epidermis and hair follicles is supplied 
by melanocytes that manufacture melanin (black pigment) 
or phaeomelanin (yellow/orange pigment) and deposit 
it into melanosomes that are transferred to hair shaft or 
epidermal cells. Melanocytes differentiate from melanoblasts 
that arise from the neural crest. After undergoing an initial 
period of proliferation, melanoblasts migrate between 
the dermatome and overlying ectoderm, and from E10.5 
of mouse embryogenesis migrate through the developing 
dermis. Starting at approximately E12.5, melanoblasts move 
from the dermis to the epidermis, and by E15.5 they begin 
to migrate into the developing hair follicles [21–24] (Figure 
2). By two weeks of age melanoblasts are absent from haired 
regions of mouse epidermis [24]. In contrast, in human skin 
melanoblasts and melanocytes populate the epidermis as well 
as the hair follicles. Genetic analysis in mice has revealed 
requirements for several factors in melanoblast migration, 
proliferation, and/or survival [25,26]. Mutations in a variety 
of these genes are known to cause pigmentation and other 
neural-crest-related defects in humans as well as in mice [25].

Interactions between Neighboring Cells Control Hair 
Follicle Development

While epidermal cells, dermal fi broblasts, and melanocytes 
have differing embryonic origins and migration pathways 
[27–29], these cells interact extensively during development 
of the skin and its appendages [17,19,30,31]. Experiments 
in which epithelium and mesenchyme from different body 
regions, different developmental stages, or different species 
were combined and allowed to develop at ectopic sites 

revealed that signals from the dermis initiate hair follicle 
development by inducing formation of a regular array of 
local thickenings, or placodes, in the overlying surface 
epithelium [17]. Signals from each epithelial placode induce 
the clustering of a ball of underlying mesenchymal cells, the 
dermal condensate. Signaling from the dermal condensate to 
the epithelium results in downward growth of the epithelial 
cells (Figure 3), which surround the dermal condensate, 
thereafter known as the dermal papilla (DP) [17]. The DP 
directs the rapid proliferation of adjacent epithelial cells 
called matrix cells, which gradually exit from the proliferative 
compartment, and terminally differentiate to form the hair 
shaft and the inner root sheath that molds the shaft [32]. 
An outer root sheath that is contiguous with the epidermis 
surrounds the inner root sheath, and the follicle is bound by 
a dermal sheath. 

Surgical removal of the DP and the contiguous lower 
dermal sheath prevents hair growth, indicating the 
importance of the DP as a key signaling center for the follicle 
[33]. DPs or dermal sheaths implanted at ectopic sites 
demonstrate a remarkable ability to induce the formation of 
new follicles, even from terminally differentiated epithelium 
such as the central cornea of the eye [34–36]. This inductive 
ability is lost if the DP cells are cultured in the absence of 
epithelial cells or without the addition of WNT proteins 
[37,38], suggesting that signals from neighboring epithelium 
are necessary for maintenance of DP function (see Figure 
1B). 

Not surprisingly, these extensive epithelial–mesenchymal 
interactions require the activities of secreted ligands that 
allow communication between different cell types. WNT 
signals play key roles at the initiation of embryonic hair 
follicle development [39–42].  Fibroblast growth factor 
proteins and the tumor necrosis factor family member 
ectodysplasin also promote epithelial placode formation, 
while Sonic hedgehog controls proliferation of both 
embryonic and postnatal hair follicle epithelium [30]. 
The BMP inhibitor Noggin is essential for hair follicle 
development [43], and acts in conjunction with WNT 
signaling and transforming growth factor β2 to control 
invasion of the dermis by hair follicle epithelial cells [44,45]. 
Differentiation of matrix cells toward either inner root 
sheath or hair shaft requires BMP signaling and numerous 
transcription factors [30,46–49]. The precise mechanisms by 
which these factors facilitate communication between cells 
of different types to produce an organ as complex as the hair 
follicle remain only partially understood.
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Figure 2. Schematic Depiction of Directions of Melanoblast 
Migration in Embryonic Mouse Skin from E9.5 to E17.5
Pink, epithelium; black dots, dermal fi broblasts; blue ovals, melanoblasts; 
red dots, dermal condensate/DP.
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Hair Follicle Growth: The Role of SCs

The hair follicle undergoes cycles of growth and regression 
throughout life. At the onset of a new cycle of hair growth 
(anagen), signals from the DP are thought to stimulate the 
transient proliferation of epithelial SCs in the permanent 
bulge region of the follicle [50]. Bulge SC descendants give 
rise to all the epithelial layers of the regenerating hair follicle 
[51–55] (see Figure 1B). The extent to which these cells also 
contribute to epidermis in normal and pathological situations 
is currently not clear. Epithelial SCs coexist in the bulge with 
a population of melanocyte SCs that proliferates transiently 
at anagen onset and gives rise to differentiated melanocytes 
that populate the hair follicle bulb [56]. Hair graying in 
genetic mouse models and in humans is associated with loss 
of the melanocyte SCs [57]. Forced expression of a stabilized 
form of the WNT pathway effector â-catenin in hair follicle 
epithelial SCs causes the onset of a new cycle of growth of 
pigmented hair, suggesting that WNT signaling is critical 
for epithelial SC proliferation, and that secreted factors 
downstream of β-catenin can activate melanocyte SCs [58–60]. 

Several recent reports have identifi ed cell populations 
in the skin that appear to be capable of differentiating into 
cell types other than hair follicle epithelium and epidermis, 
raising the exciting possibility that skin SCs could be used 
to regenerate organs beside the skin and hair follicles. For 
example, neural crest derivatives [14] and cells expressing a 
Nestin–green fl uorescent protein (GFP) transgene [61] have 
been isolated from the bulge regions of vibrissa (whisker) 
follicles and can differentiate in culture into neurons, smooth 
muscle cells, and melanocytes. Multipotent cells termed 
skin-derived precursor cells have also been derived from the 
dermis of adult skin, and several lines of evidence suggest 
that the endogenous niche for these cells is the hair follicle 
DP [13]. In a separate study, clonal cell lines established 
from dissected rat vibrissa DPs and dermal sheaths had 
extended proliferative capacities and could differentiate into 
fat- and bone-related lineages [62]. Although it is possible 
that the skin-derived precursor cells and dissected vibrissa 
preparations could have been contaminated with non-
DP cells, these data suggest that DP cells not only possess 
remarkable inductive capacities but also reside in a niche 
provided by the surrounding follicular cells that enables them 
to maintain a large proliferative capacity and the ability to 
differentiate into multiple cell types.

Relatively few cells reside in specialized niches such as the 
hair follicle DP and bulge, making molecular analyses of 

pure populations of these cells diffi cult. Recently, however, 
hair follicle bulge epithelial SCs have been isolated by 
utilizing a specifi c promoter to target GFP to adult bulge 
epithelium [52], or by taking advantage of the rarely cycling 
properties of epithelial bulge cells to target GFP expression 
to this population [55]. These approaches permit the use 
of fl uorescence-activated cell sorting (FACS) to isolate and 
transcriptionally profi le pure bulge epithelial SC populations.

In the current issue of PLoS Biology, Rendl et al. [63] 
take similar approaches to systematically analyze the 
transcriptional profi le of the DP and four surrounding cell 
types: dermal fi broblasts, melanocytes, epithelial matrix 
cells, and outer root sheath cells, from mouse hair follicles 
four days after birth. At this time point, embryonic hair 
follicles have reached a late stage in their differentiation 
and are beginning to synthesize hair shafts. Rendl et al. 
marked each skin cell population with a unique combination 
of fl uorescent tags, using a clever mix of cell-type-specifi c 
transgenic expression of red and green fl uorescent proteins, 
together with immunolabeling of specifi c antigens. Each of 
the different cell populations was found to possess a distinct 
molecular signature. These experiments identifi ed genes 
not previously associated with hair follicles, and revealed 
cell-type-specifi c expression for several genes affected in hair 
disorders. 

Importantly, the results of this study support and extend 
previous observations that the DP expresses genes originally 
associated with neural SCs [13]. However, Rendl et al. fi nd 
that the DP transcriptional profi le is clearly distinct from 
that of neural SCs, neural crest, or melanocytes, and is most 
similar to that of dermal fi broblasts. These data support 
the concept that DP cells and dermal fi broblasts arise from 
similar precursors. Consistent with this view, use of a Hoxb6-
Cre transgene to label derivatives of lateral plate mesoderm 
resulted in apparent marking of ventral trunk DPs as well 
as ventral trunk dermal fi broblasts, suggesting that at least 
some DP cells have common origins with neighboring dermal 
fi broblasts ([11]; S. I. Candille and G. S. Barsh, personal 
communication). Thus, differences in gene expression in 
DP cells compared with neighboring dermis may refl ect the 
infl uences of follicular matrix and outer root sheath cells, 
rather than being the result of a distinct embryonic origin of 
the DP. Interestingly, WNT signaling and inhibition of BMP 
signaling are key elements in induction and maintenance 
of both hair follicles [39–43] and neural crest [1], and are 
featured in the DP signature. The re-utilization of these 
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Figure 3. Successive Stages of Hair Follicle Development in Embryonic Mouse Skin at E14.5–E15.5
Sections were stained with Hoechst dye to reveal the nuclei. The epithelial–mesenchymal boundary is marked by a dashed white line in each panel, and 
sites of hair follicle development are bracketed. The directions of inductive signals are indicated for each stage (green arrows). Left: placode stage; note 
larger size and columnar appearance of placode nuclei compared with those in adjacent epithelium. Middle: induction of the dermal condensate (DC). 
Right: formation of a germ stage hair follicle with a well-developed dermal condensate.
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pathways in the complex signaling environment of the hair 
follicle may account in part for the unusual gene expression 
pattern in the DP, for the remarkable inductive properties of 
DP cells, and perhaps for their apparent ability to maintain 
multipotency.

The approach employed by Rendl et al. has produced a 
remarkably comprehensive picture of gene expression in 
different components of the skin and hair follicles in the early 
postnatal period. These data will likely form the basis for a 
multitude of further investigations into the molecular nature 
of mesenchymal–epithelial interactions in the hair follicle, 
and the functions of hair-follicle-expressed genes in both 
normal development and disease. Similar approaches could 
be employed to begin to address outstanding questions in 
skin and appendage biology. Profi ling of different follicular 
compartments during the hair growth cycle may identify 
putative inductive signals produced by the DP, and could 
provide clues as to how cycling activity of epithelial and 
melanocyte SCs is coordinated. Profi ling of different cell 
compartments in various developing appendages might begin 
to reveal the molecular mechanisms by which apparently 
similar sets of signaling pathways direct the formation of 
diverse organs. As the basic mechanisms of hair follicle 
development and hair growth are conserved between 
mice and humans [30], these studies are directly relevant 
to human hair follicle biology. However, some important 
aspects of human hair biology, such as the follicular response 
to androgens at puberty and in male pattern baldness, are 
absent in mice [64]. The development of antibody-based 
multicolor labeling systems to isolate pure populations 
of human hair follicle cells would therefore be a valuable 
additional tool for investigation of human hair disease. �
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