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Research Techniques Made Simple:
Spatial Transcriptomics

Arianna J. Pifieiro'*’, Aubrey E. Houser'"*” and Andrew L. Ji'**

Transcriptome profiling of tissues and single cells facilitates interrogation of gene expression changes within
diverse biological contexts. However, spatial information is often lost during tissue homogenization or
dissociation. Recent advances in transcriptome profiling preserve the in situ spatial contexts of RNA molecules
and together comprise a group of techniques known as spatial transcriptomics (ST), enabling localization of cell
types and their associated gene expression within intact tissues. In this paper, we review ST methods; sum-
marize data analysis approaches, including integration with single-cell transcriptomics data; and discuss their
applications in dermatologic research. These tools offer a promising avenue toward improving our under-
standing of niche patterning and cell—cell interactions within heterogeneous tissues that encompass skin

homeostasis and disease.
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INTRODUCTION

Rapid advancement in gene expression profiling methods has
transformed our ability to understand the tissue alterations
associated with development, homeostasis, and disease. The
advent of high-throughput next-generation sequencing (NGS)
has prompted an omics revolution with exciting technolog-
ical breakthroughs, such as single-cell RNA sequencing
(scRNA-seq), providing novel insights into the cellular het-
erogeneity of such tissues. SCRNA-seq has enabled the
identification of rare cell populations often masked within
bulk profiling and pinpointing the expression of genes of in-
terest to specific cell types (Wu et al., 2018). However,
scRNA-seq has significant limitations because key spatial in-
formation is unobtainable, cells can be difficult to dissociate
from archived samples, and dissociation can introduce arti-
facts in gene expression (Van Den Brink et al.,, 2017). In
addition, cells often coordinate their behaviors as part of
niches consisting of multiple and diverse cell types, and lack
of spatial information from single-cell assays has limited their
biological interpretation in that respect. Addressing this key
limitation, the latest omics techniques include a range of
methods aimed to quantify gene expression within intact tis-
sues, together known as spatial transcriptomics (ST), which
preserve the in situ spatial locations of transcripts expressed
within a tissue of interest. ST has the potential to elucidate the
coordination of gene expression changes across cell types
influenced by their proximity to one another, thereby

informing intercellular communication. This article provides
an overview of ST methods, principles of analysis for their
assayed data, and their applications toward improving our
understanding of cutaneous biology and disease.

OVERVIEW OF ST TECHNIQUES

ST encompasses in situ hybridization (ISH), in situ sequencing
(ISS), and in situ capturing (ISC) technologies (Figure 1; ab-
breviations used throughout the text are included in Table 1).
These techniques are broadly divided into approaches that
target specific genes a priori (ISH and ISS) or capture tran-
scripts in an unbiased manner for transcriptome-wide
profiling (ISC). A targeted approach can detect a higher per-
centage of existing transcripts (i.e., high efficiency) present
within the tissue, but fewer unique genes can be assayed at
once (typically a few hundred genes, although this number
continues to increase). Conversely, unbiased profiling can
capture thousands of genes at once but at the cost of lower
efficiency (i.e., a fraction of RNA copies for any gene is
captured). Thus, each method comes with its own advantages
and drawbacks as well as a range of achievable resolutions
(Table 2). The resolution of these technologies refers to how
exact of a location is retained for any particular transcript and
can range from subcellular localization to a 55 pm-diameter
capture spot with distinct x—y spatial coordinates. Subcellular
approaches can pinpoint transcripts within individual cells
and even within subcellular compartments such as the
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SUMMARY POINTS

o Spatial transcriptomics (ST) encompasses a
variety of methods aimed to quantify RNA
expression directly from intact tissues.

o ST methods include in situ hybridization, in situ
sequencing, and in situ capturing technologies,
each with its own strengths and limitations.

e ST methods can be combined with single-cell
RNA sequencing (scRNA-seq) to maximize the
resolution and depth of data.

e Analysis of ST data can localize cell types of
interest, identify organizational patterns, that is,
niches of cell types within tissues, and reveal
potential cell-cell interactions (CCls).

Advantages

o ST offers high-throughput profiling of hundreds
to thousands of genes simultaneously within
intact tissue in their native context, preserving
the spatial positioning of transcripts.

e Ability to assess the spatial organization of cell
types within tissue niches and CCls.

o Availability of a wide range of computational
analysis tools that can also facilitate integration
with scRNA-seq data.

Disadvantages

e Each ST method has its own limitations in
resolution, capture efficiency, and/or
transcriptome coverage, and the burden of
choice falls on the investigator.

e Most ST methods are optimized for fresh frozen
tissue, whereas adaptation of protocols to formalin-
fixed paraffin-embedded tissue has lagged.

e Each tissue of interest may require additional
optimization of assay parameters.

e High cost, labor, and/or need for specialized
equipment have thus far limited widespread
adoption.

o A wide range of analysis methods can be difficult
to navigate for finding the method best suited for
the investigator’s needs.

cytoplasm or nucleus, whereas capture spots that are greater
than the diameter of a typical cell (~10 pm) may encompass
several cells, obfuscating which exact cell is expressing the
transcript. In recent years, these technologies have increas-
ingly shown promise as a viable alternative to scRNA-seq
because of their ability to both retrieve RNA information
and provide spatial localization and visualization, but all ST
technologies currently suffer from the suboptimal depth and/
or coverage of the transcripts assayed from intact tissue
compared with scRNA-seq. Thus, investigators may find that
combining ST with scRNA-seq from the same tissue samples
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could be synergistic for addressing certain biological ques-
tions (Longo et al., 2021).

ISH technologies include subtypes of high-plex RNA im-
aging (HPRI), such as multiplexed error-robust fluorescence,
sequential fluorescence ISH (seqFISH), and seqFISH+ (Chen
et al., 2015; Eng et al., 2019; Lubeck et al., 2014; Shah
et al., 2016), which differ in their multiplexing capacity
(Table 2). ISH techniques allow researchers to directly visu-
alize RNA molecules in their native environment instead of
requiring cells to be extracted from tissue and analyzed ex
situ. Direct visualization is achieved by hybridizing a
fluorescent-labeled probe complementary to a predetermined
RNA target of interest (Figure 1a). The signals from the labeled
probes are then used to determine quantitative measurements
of transcripts in a spatial context. The targeted nature of this
approach enables high RNA capture efficiency and single-
cell/subcellular resolution of transcripts, with ongoing im-
provements on the upper limits of the number of targets (Xia
et al., 2019). There are also notable disadvantages to ISH
technologies because cost and labor significantly increase
with the number of targeted readouts, and they require
specialized equipment (Asp et al., 2020). Currently, the major
drawbacks to ISH technologies are their relative inaccessi-
bility, labor-intensive demands, and constraints on the num-
ber of probes (and therefore transcript targets) that can be
simultaneously hybridized to the tissue.

ISS technologies, another form of HPRI, include the first ISS
protocol using barcoded padlock probes and fluorescent ISS
and implement direct base-pair fluorescence readout of
cDNA amplicons containing barcodes assigned to known
transcripts that are visualized throughout the tissue (Figure 1b)
(Ke et al., 2013; Lee et al., 2014; Qian et al., 2020). These
approaches also enable subcellular resolution and have the
potential to enhance readout to a wider range of targets. The
use of barcoded padlock probes further enabled the devel-
opment of spatially resolved transcript amplicon readout
mapping, which improved the efficiency of ISS by bypassing
the reverse transcription (RT) step and introduced three-
dimensional (3D) localization of transcripts by immobilizing
DNA amplicons in a 3D hydrogel (Wang et al., 2018).
However, these methods are inherently limited by the need to
target known genes and their small fields of view, and several
have yet to be demonstrated outside of their originators’
laboratories, highlighting their relative inaccessibility.

ISC technologies, in contrast to ISH and ISS, capture tran-
scripts in situ, and sequencing is then completed ex situ,
leveraging the massively parallel nature of NGS. This modi-
fication is additionally advantageous because it enables un-
biased capture of the entire transcriptome. There are a variety
of ISC approaches, including 10X Genomics Visium, Slide-
seq, and Seg-Scope among others, which differ in their spe-
cific methods for capturing transcripts from tissue sections
(Cho et al., 2021; Rodriques et al., 2019; Stahl et al., 2016).
However, the general approach of ISC involves placing an
array of RT primers each containing distinct positional
nucleotide barcodes (assigned to capture spots) and poly-T
sequence for mRNA hybridization on slides (Figure 1c). Tis-
sues are sectioned onto these slides and then either fixed,
stained, imaged, and permeabilized (Visium and Seq-Scope)
or directly hybridized to the barcoded RT primers (Slide-
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Figure 1. Overview of ST technologies. (a) ISH methods detect specific target genes by the use of fluorophore-labeled probes. Signals from probes targeting short
sequences of transcripts are propagated by consecutive rounds of hybridization, imaging, and probe stripping. The steps depicted specifically follow the seqFISH
methods. (b) ISS methods typically involve the hybridization and ligation of a barcoded padlock probe complementary to the RNA or cDNA of a target gene.
Multiple rounds of target amplification and sequencing by ligation then allow for spatial resolution of the distinct target gene. The steps depicted specifically
follow the ISS with the barcoded padlock probes method. (c) ISC methods use capture spots containing an array of RT primers with distinct positional barcodes
and poly-T sequences to capture mRNA transcripts. RT produces cDNAs that are extracted and sequenced using next-generation sequencing. Positional
barcodes are mapped to specific locations on the tissue and enable spatial visualization of the transcriptome. The steps depicted specifically follow the 10X
Visium methods. FISSEQ), fluorescent in situ sequencing; 1D, identification; ISC, in situ capturing; ISH, in situ hybridization; ISS, in situ sequencing; merFISH,
multiplexed error-robust fluorescence in situ hybridization; RT, reverse transcription; seqFISH, sequential fluorescence in situ hybridization; ST, spatial

transcriptomics; STARmap, spatially resolved transcript amplicon readout.

seq). In the Visium workflow, on permeabilization, mRNA
molecules from the tissue diffuse downward and hybridize to
RT primers. After RT, cDNA is extracted and prepared into
sequencing libraries. After sequencing, reads are super-
imposed back onto the tissue image using the positional
barcodes for spatial visualization of the transcriptome (hence,
ISC can also be referred to as spatial barcoding). Stahl et al.
(2016) validated their first ISC method (which they named
Spatial Transcriptomics, a source of confusion when refer-
encing the various technologies) with mouse brain and hu-
man breast cancer tissues. This initial method was later
developed into the commercialized 10X Visium technology,
which incorporates smaller distances between capture spots
and spot diameters reduced to 55 pum for improved resolution.
Spot diameter limits resolution because multiple cells are
encompassed within the same barcoded regions. ISC methods
also currently suffer from lower transcript capture efficiency
(i.e., depth) than ISH and ISS in addition to scRNA-seq.
Although recent ISC advancements have increased their res-
olution down to 0.6 and 2 pum-diameter capture spots, one
major challenge to overcome will be the tradeoff between
RNA capture efficiency and resolution because decreasing
spot size diameter typically hinders efficiency (Vickovic et al.,
2019).

DATA ANALYSIS FOR ST

Analysis of ST data follows similar principles for all high-
dimensional data analysis. In this paper, we cover the steps
of ISC data analysis as a model workflow that is similar to
those of scRNA-seq analysis and can be summarized into two

main phases: preprocessing and downstream analysis
(Figure 2). However, although ISH and ISS methods feature
unique raw data processing steps associated with converting
fluorescence signal into transcript quantification, similar
preprocessing and downstream analytical methods can be
applied thereafter. The goal of preprocessing is to ensure that
high-quality data can flow into downstream analysis, which
subsequently seeks to unearth the biological implications of
the data. The steps within preprocessing include but are not
limited to quality control (QC), normalization, and dimen-
sionality reduction (Figure 2a). QC metrics such as the
number of molecules per capture spot (counts per spot) and
genes per spot indicate the depth of the data. Normalization
accounts for differences in sequencing and capture depth
across spots and is further complicated by variations in
cellular density across the tissue. The choice of dimension-
ality reduction method may be based on the priority of two
main objectives: summarization (e.g., principal component
analysis [PCA]) or visualization (e.g., t-distributed stochastic
neighbor embedding [t-SNE] and uniform manifold approxi-
mation and projection [UMAP]) (Luecken and Theis, 2019).
Currently, limitations for ST methods, namely low tran-
scriptome coverage for HPRI and low RNA capture efficiency
for ISC, typically result in less heterogeneity captured within
ST data than within scRNA-seq; thus, researchers may find
that additional integration with scRNA-seq will yield more
value.

After preprocessing, downstream analysis for ST data seeks
to identify spatial domains with coherent gene expression,
such as tissue niches and cell—cell interactions (CCls) within,
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Table 1. Abbreviations Summarized

Abbreviation Definition

NGS Next-generation sequencing
scRNA-seq Single-cell RNA sequencing

ST Spatial transcriptomics

ISH In situ hybridization

ISS In situ sequencing

ISC In situ capturing

HPRI High-plex RNA imaging

merFISH Multiplexed error-robust fluorescence ISH
seqFISH Sequential fluorescence ISH

FISSEQ Fluorescent in situ sequencing
STARmap Spatially Resolved transcript Amplicon Readout Mapping
CCl Cell—cell interaction

RT Reverse transcription

QC Quality Control

PCA Principal component analysis

t-SNE t-distributed stochastic neighbor embedding
UMAP Uniform manifold approximation and projection
TME Tumor microenvironment

cSCC Cutaneous squamous cell carcinoma

TSK Tumor-specific keratinocyte

CAF Cancer-associated fibroblast

T-lep Tuberculoid leprosy

L-lep Lepromatous leprosy

RR Reversal reactions

ATAC-seq Assay for Transposase-Accessible Chromatin with

sequencing

or pathogenic domains in diseased tissues where aberrant
interactions may occur. This can be accomplished by
methods such as clustering as well as those involving inte-
gration with scRNA-seq data such as mapping, deconvolu-
tion, and ligand—receptor analyses, which informs cell-to-cell
communication (Longo et al., 2021) (Figure 2b—d and
Table 3). Clustering compares gene expression profiles with
groups and identifies similar cell types (if the data are single-
cell resolution such as HPRI) or patterns of cell type organi-
zation such as tissue layers or niches, which cannot be
reconstructed using scRNA-seq alone. Although nonspatial
methods of clustering can be applied to ST data, clustering
methods directly incorporating spatial information are rapidly
advancing. These include methods that account for neigh-
boring spot information, tissue histology, and cellular
morphology to improve the recovery of tissue structure from
the data (Biancalani et al., 2021; Dries et al., 2021; Hu et al.,
2021; Zhao et al., 2021). Mapping and deconvolution inte-
grate scRNA-seq data with spatial data from either HPRI data
or ISC data, respectively. Mapping seeks to assign a cell type
resolved by scRNA-seq to its spatial counterpart in HPRI data.
Deconvolution seeks to predict the proportion of scRNA-seq
cell types present within the mixture of transcripts recov-
ered from each capture spot in ISC data, which can convert
multicell resolution ISC data to single-cell resolution. Both
mapping and deconvolution computational methods are
extensively reviewed elsewhere (Longo et al., 2021). A
common goal of mapping and deconvolution is to generate
cell-type maps that can be used for spatially informed ligand—
receptor analyses. These analyses look for statistically
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significant coexpression of ligands and receptors at proximal
locations (such as neighboring cell types) and predict the
likelihood of cell communication events by accounting for
the effect of distance on gene expression (Cang and Nie,
2020; Dries et al., 2021). Given the spatial restriction of
most juxtracrine and paracrine signaling events, spatially
informed ligand—receptor analyses can maximize the pre-
dictions of CCls by eliminating CCls derived from scRNA-seq
analyses alone that are spatially implausible. Computational
methods for these tasks are quickly evolving, with different
methods better suited for different tasks (Lewis et al., 2021).
Thus, it is important to keep in mind that several methods may
need to be applied to accomplish one’s analysis goals.

APPLICATIONS OF ST IN DERMATOLOGIC RESEARCH
Given the diversity of cell types present in normal and
diseased skin, ST is poised to become a powerful tool for
dissecting the relationships among these various cells. Areas
in which ST has proven to be valuable thus far are skin cancer
and immune responses in infectious skin diseases (Figure 3).
Elucidating ligand—receptor and CCls in these settings offers
the potential for biomarker discovery and therapeutic op-
portunities. Thus far, ISC technologies have emerged as the
most frequently used tool in cutaneous research.

With respect to melanoma research, ST (specifically 1SC)
was utilized to dissect spatial heterogeneity within lymph
node metastases in stage Ill cutaneous melanoma (Thrane
et al, 2018). The authors obtained 2,200 spatial tran-
scriptomes from four patient lymph node biopsies and used
PCA and factor analysis to show significant intertumor het-
erogeneity of spatial expression patterns across patients.
Within an individual biopsy, they observed different expres-
sion profiles overlapping regions of lymphoid tissue that were
either proximal or distant to tumor cells, suggesting a possible
influence of the immune composition by tumor cells
(Figure 3a). Moreover, this was the very first application of an
ISC technology to skin disease.

Another group utilized ST to dissect the tumor microenvi-
ronment of cutaneous squamous cell carcinoma (cSCC). They
combined ST (ISC, including Visium) and scRNA-seq on a
common cohort of patient tumor samples to identify cSCC
tumor and stromal cell populations and the spatial niches in
which they resided (Figure 3b). They further mapped ligand—
receptor networks potentially operating at the leading edge of
tumors (Ji et al., 2020). This multimodal approach discovered
a tumor-specific keratinocyte (TSK) population localized in a
heterogenous manner at the leading edge of tumors, sur-
rounded by a fibrovascular niche, and identified the most
likely ligand—receptor pairs engaged in crosstalk among TSKs,
cancer-associated fibroblasts, and endothelial cells. The
integration of scRNA-seq data with ISC data was essential for
prioritizing specific ligand—receptor pairs, some of which
were further functionally assessed through in vivo CRISPR
screening that identified tumorigenic genes enriched in TSKs
and other tumor subpopulations.

ST was also recently utilized to understand the immune
response associated with leprosy. Leprosy is histologically
characterized by granulomas, organized structures of myeloid
cells and lymphocytes surrounding and killing the causative
Mycobacterium leprae pathogen, and traverses a clinical
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Table 2. Comparison of ST Technologies

Number of Unique

Capture Genes Assayed (Multiplex
Assay Category Resolution Approach Capacity) Advantages Limitations
merFISH ISH Subcellular Targeted Up to 500 Subcellular resolution Requires specialized equipment
Up to 10,000' High RNA capture efficiency Cost and labor increase with the number of targeted readouts
Readout limited to RNA targets
seqFISH ISH Subcellular Targeted Up to 249 Subcellular resolution Requires specialized equipment
High RNA capture efficiency Cost and labor increase with the number of targeted readouts
Readout limited to RNA targets
seqFISH+ ISH Subcellular Targeted Up to 10,000 Subcellular resolution Requires specialized equipment
High RNA capture efficiency Cost and labor increase with the number of targeted readouts
Readout limited to RNA targets
Barcoded padlock ISS Subcellular Targeted Up to 100 Subcellular resolution Limited fields of view
probe ISS Readout limited to RNA targets
Lower multiplex capacity than other ISS
FISSEQ ISS Subcellular Unbiased Whole transcriptome Subcellular resolution Low capture efficiency
Unbiased readout of the whole Difficult to reproduce outside of originators’ lab
transcriptome
STARmap ISS Subcellular Targeted Up to 1,000 Subcellular resolution Limited fields of view
Increased sensitivity Readout limited to RNA targets
High RNA capture efficiency Difficult to reproduce outside of originators’ laboratories
3D localization
10X Visium ISC 55-um diameter Unbiased Whole transcriptome Unbiased readout of the whole Low capture efficiency
capture spots transcriptome Low resolution compared to ISH/ISS
Little specialized equipment required
Slide-seq ISC 10-um diameter Unbiased Whole transcriptome Unbiased readout of the whole Low capture efficiency
capture spots transcriptome Low resolution compared to ISH/ISS
Improved resolution from 10X Visium
Seq-Scope ISC ~0.6-um diameter Unbiased Whole transcriptome Unbiased readout of whole A small field of view

capture spots
(subcellular)

transcriptome
Improved resolution and efficiency
from 10X
Visium and Slide-seq

Technical challenges associated with the repurposing of
Illumina flow cell

Abbreviations: 3D, three-dimensional; FISSEQ), fluorescent in situ sequencing; ISC, in situ capturing; ISH, in situ hybridization; ISS, in situ sequencing; merFISH, multiplexed error-robust fluorescence in situ
hybridization; seqFISH, sequential fluorescence in situ hybridization; ST, spatial transcriptomics; STARmap, spatially resolved transcript amplicon readout.
"Demonstrated exclusively in cultured cells; all values without the superscripted number 1 indicate validation in intact tissue samples.
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Figure 2. Data analysis workflows. (a) For ISC, raw sequencing data are processed into count matrices consisting of genes and capture spots (this step varies
depending on ST technique because ISH/ISS involve converting fluorescent imaging signal into similar count matrices). Preprocessing of matrices involves
obtaining quality control metrics such as distributions of UMIs per spot (counts per spot) and genes per spot as well as data normalization. Dimensionality
reduction methods include summarization methods (PCA) and visualization methods (UMAP and t-SNE), which both seek to reduce gene expression data into
fewer dimensions for more informative analysis. (b) Clustering groups similar spot transcriptomes, which can be transposed over the original tissue images for
general interpretation. (c) Mapping and deconvolution combine scRNA-seq data with spatial transcriptomics data to localize cell subpopulations. Mapping
typically uses ISH data to localize scRNA-seq profiles and predict specific cell types within the tissue. Deconvolution typically uses ISC data to infer cell-type
proportions per capture spot. (d) The cell type maps generated from mapping and deconvolution can be applied for ligand—receptor analyses. The proximity of
cell types can help infer cell—cell communication events. ¢ and d were adapted with permission from Ma et al. (2021). ID, identification; ISC, in situ capturing;
ISH, in situ hybridization; ISS, in situ sequencing; PC, principal component; PCA, principal component analysis; QC, quality control; scRNA-seq, single-cell RNA
sequencing; ST, spatial transcriptomics; t-SNE, t-distributed stochastic neighbor embedding; UMAP, uniform manifold approximation and projection; UMI,
unique molecular identifier.

spectrum from limited (tuberculoid leprosy [T-lep]) to at least two subpopulations of macrophages occupied the
disseminated (lepromatous leprosy [L-lepl) disease. A recent  central zone of RR granulomas, surrounded by T cells and
study examined patient samples obtained from L-lep, T-lep,  dendritic cells in the mantle zone periphery. Multiple cell
and reversal reactions (RRs), during which patients transition  types appeared to contribute to the antimicrobial response in
from L-lep toward lesions resembling T-lep either through ~ RR, which was driven by IFN-y and IL-1B produced by
chemotherapy or spontaneously (Figure 3c) (Ma et al., 2021).  lymphocytes (T helper type 17 (TH17) and cytotoxic T cells)
Utilizing both scRNA-seq and Visium, the authors found that  and dendritic cells (including Langerhans cells), respectively.

Table 3. Analysis Packages for ST Data

Programming Incorporates Integration with cal
Package Language Clustering  Histology scRNA-seq Analysis Additional Features
Seurat R Yes No Yes No Widely used
Supports integration with additional single-cell assays
(multimodal data support)
Giotto R Yes No Yes Yes Interactive component
BayesSpace R Yes No No No Resolution enhancement of low-resolution data
Tangram Python No Yes Yes No Multimodal data support
SpaOTsc Python No No Yes Yes Infers spatial distance of cell—cell signaling
SpaGCN Python Yes Yes No No  Adjustable parameter for weighting of histology on spatial

clustering

Abbreviations: CCl, cell—cell interaction; scRNA-seq, single-cell RNA sequencing; ST, spatial transcriptomics.
For a comprehensive overview of data analysis and packages, see Lewis et al. (2021) and Longo et al. (2021).
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Figure 3. ST applications in dermatologic research. (a) ISC from lymph node biopsy of melanoma. Left: H&E staining with pathologic annotation and clustering.
Lymphoid tissue occupies two clusters. Right: spatial heatmaps of select highly-expressed and variable genes. Adapted with permission from Thrane et al. (2018).
(b) Left: H&E staining and clustering of ISC spots in SCC. Right: Violin plots of TSK scores of individual spots derived from scRNA-seq data (sc-TSK score) for each
cluster. One spatial cluster within each sample demonstrates a highest sc-TSK score (dotted boxes), highlighting areas occupied by this subpopulation. Reprinted
from Ji et al. (2020) under the CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/legalcode). (c) Leprosy granuloma architecture and antimicrobial

ecosystem. Top: H&E staining of a T-lep biopsy; bottom: cell-type composition map showing MLs in the granuloma center, whereas TCs and FBs occupy the
periphery. Bar = 0.5 mm. Reprinted with permission from Ma et al. (2021). BC, B cell; CC, Creative Common; EC, endothelial cell; FB, fibroblast; ISC, in situ
capturing; KC, keratinocyte; LC, Langerhans cell; ML, myeloid cell; SCC, squamous cell carcinoma; sc, single cell; scRNA-seq, single-cell RNA sequencing; ST,

spatial transcriptomics; TC, T cell; T-lep, tuberculoid leprosy; TSK, tumor-specific keratinocyte.

Thus, ISC enabled the reconstruction of a spatially accurate
map of the architecture within leprosy granulomas, allowing
for deeper analysis of the contributing factors to the immune
response associated with this particular skin disease.
Although several studies mentioned earlier utilized the
combination of scRNA-seq and ISC on matched tissues,
additional molecular and genomics assays can be integrated
to yield further insights. By combining ISC along with lineage
tracing and bulk/scRNA-seq and assay for transposase-
accessible chromatin with sequencing (ATAC-seq), a recent
study characterized wound-associated fibroblast populations
in a mouse model of cutaneous wound healing (Foster et al.,
2021). They identified four subpopulations of fibro-
blasts—activated responder, mechanofibrotic, proliferator,
and remodeling—and localized them within the wound by
applying Visium across various time points for 2 weeks after
wounding. Integration of single-cell genomics data with Vis-
ium data enabled the imputation of chromatin accessibility

changes within fibroblasts through space and time within the
healing wound, providing deeper resolution and nuance to
the three classical wound-healing stages of inflammation,
proliferation, and remodeling. Notably, Visium also identified
macrophages in the wound center after 1 week of healing,
highlighting additional insights gained from unbiased tran-
script capture associated with ISC. Thus, the integration of ISC
with scRNA-seq and/or other assays can compensate for the
currently limited capture efficiency of ISC and facilitate
detailed spatiotemporal characterization of a coordinated
multicellular and multistate process such as skin wound
repair.

CONCLUSIONS AND FUTURE DIRECTIONS

ST can provide a high-dimensional and high-resolution
approach to investigating in situ tissue dynamics. Each ST
technology has its own tradeoffs in terms of accessibility,
transcriptome coverage and depth, field of view, and spatial
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MULTIPLE CHOICE QUESTIONS

1. In their current renditions, in situ capturing
(ISC) achieves unbiased transcriptome-wide
profiling, whereas in situ hybridization and in
situ sequencing utilize targeted profiling of a set
number of unique genes.

A. True
B. False

2. Resolution
following:

in spatial assays refers to the
A. The number of transcripts captured per unit

area
B. The number of genes that are represented in
the dataset
C. The x—y positional coordinates of a transcript
D. The ability to determine a transcript’s exact
location
3. Which of the following are advantages of ISC
over high-plex RNA imaging?
A. Lower need for specialized equipment
B. Unbiased capture of transcriptome
C. Larger field of view
D. All of the above
4. Which choice best highlights a key advantage of
combining single-cell RNA sequencing with
spatial transcriptomics (ST)?
A. Facilitates data collection protocols
B. Reduces background noise in data
C. Increases the depth of transcript capture in
the data
D. Quickens preprocessing steps
5. One goal of ST analysis is to do the following:
A. Improve diagnosis of disease from a patient
biopsy
B. Understand ligand to receptor and cell to cell
communication from a spatial perspective
C. Determine which segments of RNA are
eventually translated into proteins

D. To derive cellular communication strategies
based on a person’s genetic background

resolution. These factors, along with the specific biological or
clinical question, are all considerations when selecting from
the various ST assays currently available. Further synergy can
be achieved by integrating techniques with deeper tran-
scriptome coverage, such as scRNA-seq, on cells dissociated
from the same tissue. Similar to the diversity of ST assays
available, a variety of computational methods also exist to
perform different tasks for ST data analysis, including clus-
tering, integration with scRNA-seq data, and CCl predictions.
In assays where visual information is concurrently obtained,
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such as H&E staining during the Visium workflow, efforts to
incorporate information such as the density or morphology of
cells using deep learning approaches continue to emerge
(Bergenstrdhle et al., 2021; Pham et al., 2020'). These
methods may help to overcome the current normalization
challenges and extract additional insights from these data.
Despite the shortcomings of current ST technologies, we
envision their broad utility in dermatologic research by
elucidating the organization of various cell types present in
skin homeostasis and disease and aiding in the character-
ization of CCls.
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DETAILED ANSWERS

1. In their current renditions, in situ capturing (ISC) ach-
ieves unbiased transcriptome-wide profiling, whereas in
situ hybridization and in situ sequencing utilize targeted
profiling of a set number of unique genes.

CORRECT ANSWER: A. True

In situ capturing (ISC) leverages poly-T priming to capture
poly-A—tailed mRNA transcripts for unbiased transcriptome
profiling. In situ hybridization (ISH) utilizes predesigned oligo
probes to target predefined transcripts of interest.

2. Resolution in spatial assays refers to the following:

CORRECT ANSWER: D. The ability to determine a transcript’s
exact location.

Resolution in spatial assays refers to the ability to resolve a
measured transcript’s exact location. Typically, ISH tech-
niques can provide subcellular localization within an indi-
vidual cell (high resolution), whereas ISC techniques are
limited by the diameter of the capture spot (e.g., 55 pm in 10X
Visium). Thus, a transcript from ISC can derive from any cell
within that particular capture spot.

3. Which of the following are advantages of ISC over high-
plex RNA imaging (HPRI)?
CORRECT ANSWER: D. All of the above

HPRI encompasses the ISH methods and typically re-
quires specialized equipment for imaging fluorescent
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signals from probes targeted to the transcripts. In
addition, imaging may be limited to a smaller field of
view.

4. Which choice best highlights a key advantage of
combining single-cell RNA sequencing with spatial tran-
scriptomics (ST)?

CORRECT ANSWER: C. Increases the depth of transcript
capture in the data.

All ST methods, including both ISC and ISH methods, are
unable to measure all available transcripts present within the
profiled tissue in terms of coverage and depth. Similarly,
single-cell RNA sequencing (scRNA-seq) cannot measure all
transcripts present within each cell. Thus, no method can
achieve 100% capture efficiency. However, scRNA-seq
typically achieves higher capture efficiency and coverage
than any ST method alone and can therefore complement ST
data.

5. One goal of ST analysis is to do the following:

CORRECT ANSWER: B. Understand ligand to receptor and
cell to cell communication from a spatial perspective

Given the importance of spatial proximity in cell—cell
communication, ST provides the spatial context for the
expression of genes associated with communication, such as
ligands and receptors, which scRNA-seq is unable to account
for.
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