Abstract

Crohn's disease (CD) has the highest prevalence in Ashkenazi Jewish (AJ) populations. We sought to identity rare, CD-associated frameshift variants of high functional and statstical effects.
Exome-sequencing and array-based genotyping was performed in 1477 AJ CD cases and 2614 AJ controls. Replication genotyping of a CSF2RB (colony-stimulating factor 2, receptor beta)

rformed in 1515 CD cases . Intestinal C:

10 GM-CSF responsive cells were defined by CyTOF. Wild-type and mutant CSF2RB function
was compared in celllar transfection and primary monocyte studies. We observed evidence for CD association for the CSF2R framesif (P value 8.52x10-4) n the discovery cohort, which was
significanty repicated (combined P value 3.42x10-6). I the intesiine, robust GM-CSF induction of STATS phosphorylation is observed, with lesser inducton of PERK and pAKT. Co-transfection of
wid-type and mutant CSF2RB displayed decreased pSTATS with GM-CSF stimulaton, consistent with a dominant negative effect. Monocytes from heterozygous frameshift carriers, present i 6%
of A) CD cases, demonstrated diminished GM-CSF responses, with

tolerance. Our findings define a primary
role of diminished GM-CSF signaling and impaired innate immunity in CD pathogenesis. We are currently working on expanding our CSF2RB finding to other immune modulators such as PGE2,
IL-3, and IL-5, that demonstrate the similar genetic architecture.

Introduction

A major focus of our research is understanding the prevalence of IBD in the Ashkenazi Jewish population. We are working on further identifying rare disease associated variants in Ashkenazi
Jewish population by Exome Chip technology as well as the biological function of those idenfied genes. Dr. Cho's research has contributed to defining the pathophysiologic mechanisms of [BD by
identifying associations to NOD2, IL23R, and 163 loci to 18D. With new findings our research is evolving to now looking at the function of lipid mediators and their related cytokines in innate
immune cells, and the full . the

Furthermore, we investigate the relationship between environmental factors and IBD by examining how hosts (humans) interact with gut microbes and how the interaction may lead to IBD

susceptibity and/or maintain IBD pathogenesis. By dissecting the relationship between IBD genetics, immune response, and microbes, we would have a better chance to develop treatment for
biocking pro-inflammatory proteins, inflammatory pathways, or immune cel entry into intestine. The integration of our research with the clinical research for IBD has great potential for the future of
1BD treatment.
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Figure 4. CyTOF analysis of cellular expression of CSF2R, CSF2RA, NOD2 and CD206 in CD intestine.
Representative cluster plot of CyTOF output for not infiamed (ieft) and infiamed (right) regions from resected terminal
ileum from a CD patient. Colors correspond to the average quantity of CSF2RB (A), CSF2RA (B), NOD2 (C) and
D206 (D) detected per cell (blue to red continuum corresponding with low to high expression). The size of each node
corresponds to the number of individual cels detected

Figure 5. CyTOF analysis of intestinal cells from CD patients defines GM-CSF responding cell subsets. (&) Summary
of proportions of immune cel subtypes detected in not-inflamed and inflamed ileal specimens (n=3). (B) Relative quaniiies of
receptor subunits (left) and intracellular signaling molecuies (right) by immune cell sublype in both inflamed (right) (n=3) and 1
notinflamed (ieft) regons ol resected terminal ileum. (C) Quantification of CSF2RA (green) and CSF2RB (orange) expression
inimmune cell subsets. l6-change of phosphorylated STATS in immune cel subsets in response to GM-CSF treatment
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Functional studies- generating mutant cell line & recalling mutation carriers for peripheral
blood monocytes signaling analysis

Figure 6. The CD-associated frameshift in CSFZRG resuls in &
truncated protein and altenuates GM-CSF-induced STATS
; Bhosphorylation in a dominant negaive manner. () HEK203

cells were transfected with CSF2RA + wildype (WT) andlor
frameshift mutation (Mut) CSF2R8, alone or in combination. Cells
were then treated with 10ng/ml GM-CSF for 15min. Representaive
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Figure 9. DSS-reated zebrafish larva s 1BD colitis model. (A) THe neutal red staiing of ntestinal macrophages n contrl, 015 DSS and 0.25%
DSS. Total magnification s 40X. The blue arrow pois to the midgut, (B) The closer view of 200X total magnification, The DSS-
treated larva shows a lower red color intensity compared to control. (C) Quantification of color intensity as gut muv:vwhage alignment. N = 25 for control,
0.1% and 0.25% DSS. ***, P < 0.001. (D) The alcian blue staining for mucin and goblet cells in zebralish midgut in control, 0.1 and 0.25% DSS treatments.
‘Total magnification is 200X. Bar 100 um.

Functional studies- human enteroids (colonic & intestinal stem cells)

Figure 11 Investigating the interaction between
| crypts and microbes. (A) Cross section of leal resection
from 50 patet. The nucleussaining (e
shows the infilration of mononuclear cells such as
neutophds, morcyes and acrophages. Eactert codd
. be found within the damaged cryps of the IBD patient. (B)
" The closer view of the bacteria (dark blue) inside the
“ | crypts. (C) Identifying and profiing the “crypt bacteria”
from IBD resection sample by next generation sequencing-
based 165 ribosomal RNA.
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immune response, microbiome and genetics in [BD.

Figure 10. Human enteroid biobank from intestinal biopsy and
tissue resection. (&) The brightfield image of enteroid spheres. (B)
Staining ROS (green) in live enteroid culture. (C) Staining of ISC marker
LGRS (red) in PFA fired spheres. (D) The merged image of LGRS (red)
and nucleus (DAPI; Jis in sph




