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Summary: Dendritic cells (DCs) have been extensively studied in mice
lymphoid organs, but less is known about the origin and the mechanisms
that regulate DC development and function in non-lymphoid tissues.
Here, we discuss recent evidence establishing the contribution of the DC-
restricted lineage to the non-lymphoid tissue DC pool and discuss the
mechanisms that control the homeostasis of non-lymphoid tissue DCs.
We also review recent results underlining the functional specialization
of tissue DCs and discuss the potential implications of these findings in
tissue immunity and in the development of novel vaccine strategies.
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Introduction

Dendritic cells (DCs) are a heterogeneous population of cells

that localize in most tissue including lymphoid and non-lym-

phoid organs in the steady state. The main role of tissue DCs is

the induction of specific immunity against invading pathogens

(1, 2). Three types of DCs have been described in mice and

humans. Plasmacytoid DCs represent a population of DCs that

accumulate mainly in lymphoid organs in the steady state and

whose major function is to secrete very high amounts of inter-

feron-a (IFNa) in response to viral infections prior to differ-

entiating into mature DCs able to prime T cells against viral

antigens (3). Monocyte-derived DCs accumulate mainly in

inflamed tissue (4). By opposition to plasmacytoid DCs and

monocyte-derived DCs, tissue-resident steady-state DCs are

called ‘classical’ DCs (cDCs). This review focuses mainly

on the origin, developmental cues, and function of non-

lymphoid tissue-resident cDCs.

Phenotypic characterization of non-lymphoid

tissue-resident cDCs

Non-lymphoid tissue-resident cDCs are present in most tissues

in the steady state. DCs that populate stratified epithelia are

often called Langerhans cells (LCs), whereas DCs in connective



tissues are called interstitial DCs. Because these terms do not

provide details on the origin or function of the cells, we chose

to refer to non-lymphoid tissue DCs only by the name of the

tissue in which these cells reside.

Phenotypically, DCs have a forward and side scatter that fall

in the monocyte gate, they lack lineage markers, express both

the hematopoietic marker CD45 and the integrin CD11c and

constitutively express major histocompatibility complex class

II (MHCII). Several studies have now established that this defi-

nition is too broad and includes distinct DC populations with

different origins and functions.

The cutaneous DC network

Cutaneous DCs are present throughout the skin in the epi-

dermis and the dermis (5). DCs in the epidermis are also

known as LCs, whereas dermal DCs belong to a broader

subset of interstitial DCs (5). Through their extended den-

drites, LCs form a continuous cellular network to survey for-

eign antigens that breach the skin thus providing the first

immunological barrier to the external environment. Epider-

mal LCs account for 3–5% of all nucleated cells in the epi-

dermis of mice and human, with approximately 700

LCs ⁄ mm2 that are arranged in a network occupying the

interstices between neighboring keratinocytes (5). LCs are

the only hematopoietic cells in the epidermis in quiescent

human skin, whereas mice have an additional population of

epidermal cd T cells (6).

Human and murine LCs are easily identified in the epider-

mis based on the expression of CD45 and MHCII molecules.

They also constitutively express the lectin receptor langerin

along with its associated Birbeck granules. Human and murine

LCs express the adhesion molecules E-cadherin and the epithe-

lial-cell adhesion molecule (EpCAM), which anchor LCs to

neighboring keratinocytes (7, 8) and the lectin CD205 impli-

cated in antigen capture and antigen processing (9, 10).

Human but not murine LCs express high levels of CD1a (pre-

viously named OKT6; 11), a member of the group 1 CD1 pro-

tein (CD1a, CD1b, and CD1c), which has the capacity to

present microbial lipid antigens to T cells (12). Some studies

refer to all DC populations present in stratified epithelia as

LCs, including those present in the cornea (13), oral mucosa

(14), tonsils (15), pharynx, upper esophagus (16), vagina,

and ectocervix (16). Stratified epithelia DCs have been called

LCs based on their localization and the expression of langerin,

but it remains to be examined whether these cells are ontoge-

nically related to LCs. One key feature of epidermal LCs is their

ability to repopulate locally independently of circulating pre-

cursors (17). This key homeostatic property distinguishes

them not only from other cutaneous DCs but also from DCs in

other stratified epithelia locations (18) suggesting that epider-

mal LCs represent a unique population. We therefore propose

restricting the term LCs to epidermal DCs.

Dermal DCs have been much less studied than LCs owing to

the difficulty in isolating these cells. DCs in the dermis include

dermal-resident DCs and migratory LCs on their way to the

draining lymph nodes (LNs; 5). Up until recently, human and

murine dermal-resident DCs were thought to form a homoge-

nous population easily distinguishable from migratory LCs

based on the absence of langerin expression (19). There is

now clear evidence that at least in mice, dermal-resident DCs

contain an additional DC population, independent of LCs that

also express langerin (20–23).

The classical dermal langerin) DCs represent the majority of

the dermal DC pool, they lack langerin expression, and express

high levels of the integrin CD11b and several macrophage

markers such as F4 ⁄80, CX3CR1, and SIRPa (24). The recently

identified langerin+ DC population represents 20% of the total

dermal DC pool. In contrast to LCs, dermal langerin+ DCs

express the integrin aEb7 (also called CD103) (25), they lack

the adhesion molecules E-cadherin and Epcam, and express

low levels of the integrin CD11b (Fig. 1). CD103+ DCs do not

express the chemokine receptor CX3CR1, F4 ⁄80, and SIRPa

(24). For simplicity, the two dermal-resident DC populations

are referred to as CD103+ DCs and CD11b+ DCs throughout

this review. CD103 is not an essential molecule for DC develop-

ment, nor it is a specific marker of DCs. CD103 is also expressed

on epithelial T cells (25), and CD103) ⁄ ) mice do not have

major defects in DC development (J. Helft and M. Merad,

unpublished data). CD103+CD11b) langerin+ DCs are also

present in lymphoid organs where they co-express CD8aa

antigen on the cell surface (J. Helft and M. Merad, unpublished

data). In addition to these two major DC subsets,

MHCII+CD11c+CD103)langerin)CD11b) cells have also been

identified in the dermis and shown to migrate to the draining

LN in the inflamed setting (23, 24).

The lung cDC network

Lung MHCII+CD11c+ cells form a rich network of cells that

accumulates in the airways epithelia and the lung parenchyma

(26). DCs that accumulate in the stratified epithelia of the

large airways resemble LCs (18, 26). They are organized in a

tight network of cells (26) and express high levels of langerin

(27, 28) and the integrin CD11b (A.J. Bonito, F. Ginhoux,

and M. Merad, unpublished data). The lung parenchyma contains
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two DC populations that accumulate near the small airway

epithelia. Phenotypically, these cells resemble those present in

the dermis and include CD103+ DCs and CD11b+ DCs (29)

(Fig. 1). Although in most tissues the proportion of CD103+

DCs among total DCs rarely exceeds 20%, they are present in

higher numbers in the lung where they represent up to 40%

of the total lung DC pool.

The intestinal cDC network

MHCII+CD11c+ cells are present throughout the intestine

where they reside in the lamina propria facing the lumen (30,

31) and in the muscular layers and the serosa facing the peri-

toneum (32). DCs also accumulate in intestinal lymphoid tis-

sues that include the Peyer’s patches, isolated lymphoid

follicles, and the mesenteric LNs (33). Although the pheno-

type of DCs in the Peyer’s patches and mesenteric LNs has

been the subject of several reviews (33, 34), the diversity

of lamina propria DCs is only starting to be unraveled. Here, we

will review mainly recent developments in lamina propria DC

biology.

Lamina propria DCs that express the cell surface molecule

CD103 or CX3CR1 play key roles in mucosal immunity.

CD103+ DCs were shown to have a superior ability to induce

the expression of gut homing molecules on T lymphocytes

and to drive the peripheral generation of Foxp3+ T-regulatory

cells (29, 35, 36), whereas the expression of CX3CR1 by DCs

is thought to control the projection of dendrites through the

epithelial cell layer and the sampling of luminal antigens (37).

However, it remained unclear whether CD103 and CX3CR1

Fig. 1. Characterization of tissue-resident dendritic cells (DCs). Two DC compartments with distinct cell surface phenotype and immune function
have been identified in most non-lymphoid tissues. The nature of the bone marrow precursor that gives rise to each DC subset, the growth factor
receptor requirements, as well as the transcription factors that control their development are summarized here. Additional DC populations can be
found in the skin and intestine. In the skin, embryonically derived DCs also called Langerhans cells populate the epidermis. In the intestine, a popula-
tion of CD103+ DCs with a distinct phenotype and regulatory program than most non-lymphoid tissue CD103+ DCs populates the lamina propria.
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molecules were expressed by similar or distinct DC popula-

tions. We recently found that MHCII+CD11chi DCs accumulate

mainly in the intraepithelial and lamina propria cell fractions

and were absent from the muscularis and the serosa.

MHCII+CD11c+ DCs included three populations best

characterized as CD103+CD11b), CD103+CD11b+, and

CD103)CD11b+ DCs (38) (Figs 1 and 2). CD103+CD11b) DCs

were enriched in the Peyer’s patches, and the majority of these

cells also co-expressed CD8aa on the cell surface, whereas

CD103+CD11b+ and CD103)CD11b+ DCs accumulated

mainly in the lamina propria. Similar to other tissues, lamina pro-

pria CD103+ DCs in the small bowel represented no more than

20% of the total DC pool. CX3CR1 was expressed exclusively

on CD103)CD11b+ DCs and was absent from

CD103+CD11b) DCs and CD103+CD11b+ DCs (38). In con-

trast to the mucosa, the muscularis and serosa layers contained

only one homogeneous DC population characterized as

MHCIIhiCD11cloCD103)CD11b+CX3CR1+ (38). Similar pop-

ulations were found in the colon, although the number of

CD103+CD11b) DCs was higher in the colon than in the small

bowel. Altogether our results suggest that most CD103+ DCs

in non-lymphoid tissues express low levels of CD11b and lack

CX3CR1, with the exception of the lamina propria CD103+ DCs

that express high levels of CD11b but still lack CX3CR1.

CD103+CD11b) DCs are also present in the gut, but they

accumulate mainly in the lymphoid tissue and similar to the

CD103+ DC subset of lymphoid organ-resident CD8+ DCs,

they express the CD8aa homodimer and the integrin CD103

and lack the integrin CD11b (38).

cDCs in distant tissues

MHCII+CD11c+ cells are present in most tissues in the steady

state with the exception of the brain parenchyma. Liver,

kidney, and pancreatic islet DCs resemble those present in

the dermis and the lung parenchyma and include CD103+

and CD11b+ DCs (24) (Fig. 1). In all these tissues, the rela-

tive number of CD103+ DCs is much lower than that of

CD11b+ DCs and rarely exceeds 20% of the total tissue DC

pool. The phenotype of these DC compartments is similar to

the phenotype of the dermal DC subsets with the exception

of langerin, which is expressed at variable levels among

tissue DCs and is absent from pancreatic islet DCs (24). In

addition to these two major DC subsets, MHCII+CD11c+

CD103)langerin)CD11b) cells (24) can also be found in

these tissues and a better characterization of this population

both at the protein and mRNA levels is currently being done

in the laboratory.

Tissue-migratory DCs

DCs are thought to migrate to the draining LN at a very low

rate in the steady state (39–41) and their rate of migration is

increased during inflammation (42). The chemokine receptor

CCR7 controls DC migration to the draining LN (43, reviewed

in 44). CCR7-deficient mice LNs lack mainly tissue-migratory

DCs but not lymphoid-resident DCs (44).

Transgenic mice with enforced production of melanin gran-

ules in the skin have been used to assess steady-state migration

of cutaneous DCs. Because melanin granules are not degrad-

able they can be used to trace antigen trafficking to the LN in

these mice. Interestingly, melanin granules were absent from

the LN of mice deficient in transforming growth factor-b1

(TGF-b1) but not in mice deficient in Fms-like thyrosine

kinase 3 ligand (Flt3L; 40). As LCs represent the only cutane-

ous DC subset that is dependent on TGF-b1 (8) and indepen-

dent of Flt3L (see next), these results suggest that LCs are the

main population that transport melanin to the draining LN in

the steady state. To assess the steady-state migration of DCs in

other tissues, we used LysM-Cre · Rosa26-floxstopfloxEGFP mice in

which Cre activity removes a stop cassette upstream of the flo-

xed reporter and induces irreversible expression of enhanced

green fluorescence protein (eGFP) in lysozyme M (LysM)-

positive cells and their progeny (45). Lysozyme is expressed

by granulocytes, monocytes, and a subset of DCs. The hypoth-

esis underlying this study was that eGFP+ DCs in non-lym-

phoid tissues should not give rise to DCs expressing lower

eGFP levels in the draining LN, as eGFP expression is irrevers-

ible in these mice. Therefore, this model can be used only to

trace the steady-state migration of lysozyme eGFP+ DCs but

not lysozyme eGFP) DCs (45). In the lamina propria, 90% of

CD103)CD11b+ lamina propria DCs are eGFP+ in LysM-Cre ·
Rosa26-floxstopfloxEGFP mice, whereas less than 20% DCs

express eGFP in the mesenteric LN suggesting that

CD103)CD11b+ lamina propria DCs are unlikely to migrate to

the mesenteric LN in the steady state (38). The migration of

lamina propria CD103+CD11b) DCs could not be assessed in this

model because they express low levels of lysozyme ⁄ eGFP.

In contrast in the inflamed setting, tissue DC migration to

the draining LN increases many fold (45). Interestingly in the

skin, cutaneous DC subsets differentially migrate to the drain-

ing LN in response to contact sensitizing agents. Migration of

CD11b+ and CD103+ dermal DCs peaked after 1 day, fol-

lowed by LCs at 4 days post-skin sensitization (23, 46)

although in a herpes simplex virus (HSV) skin infection

model, epidermal LCs emigrated from the epidermis at earlier

time points (47). Similarly in the gut, CD103+CD11b+ lamina
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propria are the first DC population to arrive in the mesenteric

LN upon Salmonella infection (38) (see next section). The func-

tional implications of the differential migration of tissue DC

populations remain to be examined.

Turnover of non-lymphoid tissue DCs

Tissue cDCs sample antigens and migrate constantly through

afferent lymphatics to the T-cell areas of LNs, a process that

increases many fold in response to inflammatory signals

(reviewed in 44). Although DC efflux from tissues to the tis-

sue-draining LN is difficult to quantify accurately, it is clear

that tissue DC homeostasis requires constant replacement with

new cells. Results from studies assessing bromodeoxyuridine

(BrdU) labeling, cell cycle analysis, and rate of DC replacement

in bone marrow chimera mice and parabiotic mice have

helped characterize DC turnover in tissue. Although most of

these studies have been performed in lymphoid tissue-resident

DCs, recent studies have started to examine the turnover of

DCs in non-lymphoid tissue.

BrdU labels actively proliferating cells and cells that derive

from proliferating precursors. As DCs are constantly recruited

from circulating bone marrow-derived circulating precursors,

we measured BrdU labeling at early time points after injection

to identify DC proliferation in non-lymphoid tissues. We

found that 12 h after BrdU injection, 5–10% of DCs in the

dermis and lung, and 10–20% of DCs in the liver and kidney

were labeled with BrdU. The relative numbers of BrdU-

labeled CD103+ DCs and CD11b+ DCs were similar except in

the kidney where the CD11b+ DC subset was labeled to a

lower level suggesting that both DC subsets in tissues are

dividing in the steady state (24).

Although the rate at which tissue-resident DCs are replaced

by hematopoietic precursors in bone marrow chimera mice is

often used as a measure of DC turnover in mice, these mea-

sures reflect only DC turnover after radiation-induced injuries

as bone marrow reconstitution is usually performed in irradi-

ated animals. Kidney and heart cDCs are replaced in

2–4 weeks after lethal irradiation and bone marrow reconsti-

tution, whereas DC repopulation in the vagina (16), airway

epithelia (18), and the intestine is more rapid and occurs in

7–13 days (M. Bogunovic and M. Merad, unpublished data).

Parabiotic mice provide a valuable assessment of the physio-

logical turnover of DCs in non-lymphoid tissues. Parabionts

are surgically attached mice that share the same blood circula-

tion but separate organs for long periods of time (48). The

level of tissue DC chimerism in parabionts depends on DC

turnover in tissue, but is also dependent on the half-life of DC

precursors in the blood. Circulating myeloid precursors are

thought to have a shorter lifespan in circulation than lym-

phoid precursors, leading to a reduced mixing of myeloid

cells compared with lymphoid cells in parabionts (49).

Instead, measurement of the decay of parabiont-derived DCs

in the lung, liver, kidney and spleen after parabiosis separation

provides a better assessment of DC lifespan in non-lymphoid

tissues. The rate of DC replacement by blood precursors

occurs in 12–14 days in most tissues including the spleen,

LN, liver, and kidney with the exception of the lung. Among

lung DCs, most CD11b+ DCs were lost in 30 days after separa-

tion (15 days half-life), whereas only 50% of parabiont-

derived lung CD103+ DCs were lost at that time (30 days

half-life) (24). These results suggest that DCs in non-lym-

phoid tissues undergo a limited number of divisions and must

be continually replaced by blood-borne precursors.

In contrast, epidermal LC lifespan differs fundamentally

from that of other cDCs (reviewed in 5). Approximately,

2–3% of LCs are constantly cycling in the steady state and LCs

are maintained locally independently of circulating precursors

throughout life (17). Although not representative of steady-

state turnover, it is interesting that in patients who received

allogeneic hematopoietic cell transplantation, recipient LCs

can be identified unequivocally in the epidermis more than

1 year after transplantation (50). Donor LCs have also been

shown to persist for years in a recipient of a human limb graft

(51) suggesting that human LCs like their murine counter-

parts repopulate locally in the steady state.

Origin of non-lymphoid tissue-resident cDCs

The DC-restricted lineage

With the exception of epidermal LCs, DCs have a limited life-

span in tissue and must be continually replaced by circulating

blood DC precursors (17, 49). The identity of the circulating

precursors that contribute to steady-state DC replenishment

has been difficult to establish. Recent results from several labo-

ratories revealed the presence of a DC-restricted lineage that

originates from the bone marrow and gives rise to DCs in

most tissues.

Functionally specialized hematopoietic cells in peripheral

tissue are thought to derive from bone marrow hematopoietic

progenitors that have progressively lost their developmental

potential to other cell types (52). Current data suggest the ear-

liest lineage potential decision a developing multipotent pro-

genitor population must make is whether to become a

lymphoid or myeloid cell type, and once it does, this decision

is permanent. Early committed myeloid and lymphoid pro-
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genitors have been identified in mice and men (52). Common

myeloid progenitors (CMPs) give rise to granulocytes, ery-

throcytes, megakaryocytes, and monocytes, whereas common

lymphoid progenitors give rise mainly to lymphocytes. In

addition to these committed progenitors, more recent studies

reveal overlapping and alternative graded stages of early line-

age commitment (53).

The successive commitment steps in DC differentiation

have recently been elucidated (Fig. 2). Studies suggest that

DCs differentiate from a myeloid precursor that has lost the

potential to give rise to granulocytes, erythrocytes, and

megakaryocytes but maintains its capacity to differentiate

into monocytes, macrophages, DCs, and plasmacytoid DCs.

This precursor called the macrophage ⁄DC precursor (MDP)

gives rise to a common DC precursor (CDP) which subse-

quently produces cDC-restricted precursors called pre-cDCs

and plasmacytoid DCs in the bone marrow but has lost the

potential to give rise to monocytes (49, 54–61). Pre-cDCs

leave the bone marrow and circulate through the blood to

home to lymphoid organs where they differentiate into lym-

phoid tissue-resident DCs (Fig. 2). Each of these differentia-

tion steps corresponds to distinct immuno-phenotypes that

can be captured using flow cytometry analysis. Because adop-

tive transfer of purified progenitors in vivo in congenic mice

remains the main model to assess the differentiation potential

of hematopoietic restricted progenitors, accurate phenotypic

markers are critical to define these progenitor populations.

For example, MDPs were first described as lineage negative

cells expressing the chemokine receptor CX3CR1, the recep-

tor for the macrophage colony-stimulating factor receptor

(M-CSFR also called CD115), and c-kit and were thought

to give rise upon adoptive transfer to macrophages and

lymphoid organ-resident cDCs but not to plasmacytoid DCs.

Subsequent studies showed that lineage)ckithiCX3CR1+

Fig. 2. Origin of non-lymphoid tissue dendritic cells (DCs). The successive commitment steps in DC differentiation have recently been elucidated.
These studies suggest that DCs differentiate from a myeloid precursor that has lost the potential to give rise to granulocytes, erythrocytes, and megak-
aryocytes but maintains its capacity to differentiate into monocytes, macrophages, DCs, and plasmacytoid DCs. This precursor called the macro-
phage ⁄ DC precursor (MDP) gives rise to a common DC precursor (CDP), which subsequently produces classical DC (cDC)-restricted precursors called
(pre-cDCs) and plasmacytoid DCs in the bone marrow but has lost the potential to give rise to monocytes. Pre-cDCs leave the bone marrow and circu-
late through the blood to home to lymphoid organs where they differentiate into lymphoid tissue-resident CD8a+ and CD8a) DCs. Pre-cDCs also
home to non-lymphoid tissue to give rise to DCs. In the intestine, pre-cDCs give rise exclusively to lamina propria CD103+CD11b+ DCs and Peyer’s
patches CD103+CD11b) DCs but fail to give rise to CD103)CD11b+ DCs, whereas monocytes give rise exclusively to CD103)CD11b+ DCs. In other
tissues, pre-cDCs give rise preferentially to CD103+ DCs, although they can also differentiate into CD11b+ DCs, whereas monocytes give rise mainly
to CD11b+.
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M-CSFR+-expressing the receptor for Flt3 can also give rise

to plasmacytoid DCs in addition to monocytes, macrophages,

and cDCs (58). This revised phenotypic definition is now

used to define MDP in vivo (Table 1). Based on these results,

we conclude that a DC-restricted lineage is present in the

bone marrow and separates from a monocyte ⁄ macrophage

lineage at the level of the MDP.

Common lymphoid precursors are very efficient at giving

rise to thymic DCs but less efficient than the common myeloid

precursor at giving rise to spleen and LN DCs upon adoptive

transfer in irradiated animals (62). Common lymphoid pre-

cursors can also differentiate directly into DCs upon stimula-

tion with Toll-like receptor (TLR) ligands in vitro bypassing the

usual cellular differentiation steps (63). These data suggest

that although myeloid progenitors are the main contributors

of non-thymic DCs, lymphoid precursors can also acquire the

ability to differentiate into non-thymic DCs in response to

injury signals.

Recent studies in the laboratory established that in addition

to blood and lymphoid organs, pre-cDCs are also present in

non-lymphoid tissues, such as the liver, kidney, and lung

suggesting that pre-cDCs not only home to lymphoid organs

but also to non-lymphoid tissues (24). To examine the contri-

bution of DC-restricted precursors to non-lymphoid tissue

DCs, we adoptively transferred purified CDP and pre-cDCs

intravenously into naı̈ve congenic mice and looked for their

DC progeny 7 days later. CDP and pre-cDCs gave rise prefer-

entially to liver and kidney CD103+ DCs but were also able to

give rise to CD11b+ DCs in these tissues (24). Although the

preferential differentiation of DC-restricted progenitors into

CD103+ DCs could reflect true developmental bias, we cannot

rule out that ex vivo manipulation of DC progenitors also

affected their differentiation potential.

We were unable to recover CDP or pre-cDCs progeny in the

lung, likely because the half-life of lung DCs exceeds the half-

life of circulating DC precursors as discussed before and we

are currently examining whether CDP and pre-cDCs give rise

to lung DCs in mice that have been depleted of their lung DC

content. In the intestine, CDP and pre-cDCs gave rise exclu-

sively to CD103+CD11b+ DCs in the lamina propria and to

CD103+CD11b) DCs in the Peyer’s patches but did not give

rise to CD103)CD11b+ lamina propria DCs, restricting the con-

tribution of the DC-restricted lineage only to mucosal

CD103+ DCs (38).

Monocyte contribution to non-lymphoid tissue DCs in the

steady state

Monocytes were initially described as circulating precursors

for tissue macrophages. Two monocyte subsets can be found

in mouse blood. These monocytes differ in the expression of

the molecule Ly6C as well as molecules involved in leukocyte

migration and homing (64). Ly6Chi monocytes are

CCR2+CX3CR1lowCD62L+, whereas Ly6C) monocytes are

CCR2)CX3CR1hiCD62L) (64). Interestingly, Ly6c+ mono-

cytes are recruited to inflamed tissues, whereas the Ly6C) sub-

set appears to be recruited to non-inflammatory sites by a

CX3CR1-dependent mechanism (64). These subsets corre-

spond to the CD14+CD16) and CD14)CD16+ human mono-

cyte subpopulations, respectively (65).

The discovery of the culture conditions that leads to the dif-

ferentiation of human circulating monocytes into DCs in vitro

(66) has been largely used in the field to study the cues that

regulate DC differentiation and maturation processes. Mono-

cyte-derived DCs have also been used to promote tissue

immunity in patients (67). However, the exact contribution

of monocytes to tissue-resident DCs in the steady state remains

a difficult question to address experimentally. Genetic tagging

of monocytes is difficult owing to the lack of specific markers.

Systemic injection of latex beads has been used to follow the

Table 1. Phenotype of the classical dendritic cell (cDC) progenitors in mice

DC precursor
MDP
(Fogg et al.)

MDP
(Varol et al.)

MDPD
(Waskow et al.)

MDP
(Liu et al.)

CDP
(Onai et al.;
Naik et al.)

CDP
(Liu et al.)

Pre-cDCs
(Liu et al.)

Lineage markers – – – – – – –
CD11c – – – – – – +
MHC II – – – – – – –
c-kit + + « High Low Low ND
CX3CR1 + + + + ND + +
CD115 « (mRNA+) + + + + + ND
Flt3 ⁄ CD135 « (mRNA+) ND « + + + High
References (56) (61) (178) (58) (59, 60) (58) (58)

MDP, macrophage ⁄ DC precursor; CDP, common DC precursor; MHC, major histocompatibility complex; Flt3, Fms-like thyrosine kinase 3; ND, not
determined.
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progeny of the two monocyte subsets in vivo (68). Using this

technique, Ly6 ⁄ c+ monocytes were found to give rise to lung

CD103+ DCs, whereas Ly6c1lo monocytes differentiate mainly

into lung CD103) DCs (69). Adoptive transfer experiments

have also been used to trace monocyte differential potential

in vivo. In contrast to DC-restricted precursors, monocytes do

not expand after adoptive transfer and monocyte-derived cells

may never reach threshold detection levels which may explain

why several studies have failed to detect monocyte-derived

DCs in this model. We have also failed to detect a substantial

contribution of adoptively transferred monocytes to lung, kid-

ney, liver, and lamina propria DCs in the steady state (24). To

increase the sensitivity of the transfer, we and others have

injected monocytes into transgenic mice expressing the diph-

theria toxin receptor (DTR) under the CD11c promoter

(CD11c) DTR mice) and used DT injection to eliminate tis-

sue-resident CD11c+ cells (70). In DT-treated mice, adop-

tively transferred monocytes gave rise to lamina propria

CD103)CD11b+ DCs but failed to give rise to CD103+ DCs

(38, 71). We are currently examining whether monocytes can

also give rise to DCs in other tissues in DT-treated mice and

whether similar to mucosal DCs they give rise specifically to

CD103) DCs.

The LC exception

In contrast to most DC populations, LCs are maintained locally

independently of circulating precursors in the steady state

(17). These results were established in two separate models.

First, in parabiotic mice, LCs did not mix in the epidermis up

to a year after parabiosis, whereas approximately 20–30% der-

mal and lymphoid organ DCs were mixed in 4 months post-

parabiosis. In lethally irradiated mice, LCs remained of host

origin more than 18 months post-transplant, whereas lym-

phoid organ DCs were almost entirely replaced by 3–4 weeks

post-transplant.

Induction of minor skin injuries such as X-ray irradiation

or skin sensitization in congenic bone marrow chimeric mice

leads to partial elimination of LCs followed by their complete

recovery in 1–4 weeks after tissue injury. LC recovery occurs

independently of circulating precursors, as most LCs

remained of host origin in these mice (17). Recent data in

the laboratory suggest that LC repopulation in these mice

occurs through local proliferation of differentiated LCs and

we are currently examining the mechanisms that control LC

proliferation and LC homeostasis in adult skin. In contrast, in

major inflammatory injuries such as graft versus host disease

(72) and exposure to ultraviolet (UV) light (17), LCs are

repopulated by circulating precursors in a M-CSFR-dependent

manner (73). LC repopulation can also be of mixed origin

and derives from local and circulating precursors in a model

of mild cutaneous graft versus host disease (72) and in HSV-

infected skin that leads to limited LC depletion in the infected

dermatome (47). LC repopulation by circulating precursors

is dependent on the chemokine receptor CCR2 and CCR2

ligands including the macrophage chemokine proteins MCP-

1 and MCP-3 that are secreted at much higher levels in UV-

exposed skin compared with sensitized or X-ray-exposed skin

(17, 72).

Origin of DCs in inflamed tissues

Depending on the degree of inflammation, tissue-resident

DCs are either absent or reduced from injured sites and

replaced by newly recruited blood-derived DCs. Monocytes

represent an important source of blood-derived DCs in

inflamed tissue and participate in tissue immunity (65).

In the skin for example, monocyte-derived DCs accumulate

in the dermis of inflamed skin and play a role in tissue immu-

nity (74, 75). In contrast, in the epidermis the replacement of

LCs by circulating monocytes is dependent on the degree of

inflammation as we have shown that embryonically derived

LCs are replaced by monocyte-derived cells upon exposure to

UV light, but not after mild injuries such as exposure to skin

sensitizers (17).

The exact half-life of monocyte-derived DCs in inflamed tis-

sue remains to be established but it is likely that inflammatory

DCs are replaced by resident DCs once inflammation subsides.

The mechanisms that control the repopulation of tissue-

resident DCs during the repair process remain to be

examined.

Cytokines that control DC homeostasis in

non-lymphoid tissues

The cytokine Flt3L and its receptor (Flt3) play a key role in

the development of DCs in mice and humans. Flt3L is ubiq-

uitously secreted by multiple tissue stroma and endothelial

cells and by activated T cells (76, 77), whereas the expres-

sion of the Flt3 receptor is restricted to the DC lineage. Bio-

active levels of Flt3L are measurable in the serum in the

steady state and increase upon inflammation and hematopoi-

etic stress, such as irradiation-induced cytopenia. Flt3L as a

single cytokine is sufficient to drive the differentiation of

mouse and human hematopoietic bone marrow progenitors

into DCs in vitro (78). Loss of Flt3 expression in hematopoi-

etic progenitors correlates with the loss of DC differentiation
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potential (79), whereas enforcement of Flt3 expression on

progenitors lacking Flt3 expression rescues their ability to

differentiate into DCs (80). Consistently, mice that are defi-

cient in Flt3 and Flt3L have reduced numbers of plasmacy-

toid DCs and cDCs in lymphoid organs (81). Intriguingly,

reduction of lymphoid organ DC is more severe in mice that

lack Flt3L compared with those lacking Flt3 suggesting the

presence of an alternative Flt3L receptor at least in mice.

Injection or conditional expression of Flt3L in mice leads to

massive expansion of cDCs in lymphoid and non-lymphoid

organs such as the intestine, the pancreas, and the liver (79,

82–86). Injection of Flt3L in humans also leads to massive

expansion of blood cDCs (87–89).

We recently examined the role of Flt3 and Flt3L in the

development of non-lymphoid tissue DCs. We found that pre-

cDCs were strongly reduced from the lung, liver, and kidney

of mice that lack Flt3L (24). CD103+ DCs were absent from

the dermis, lung, liver, pancreatic islet, kidney, lamina propria,

and Peyer’s patches of mice lacking Flt3 or its ligand, whereas

CD103)CD11b+ DCs were reduced but at a lower levels in

these mice (24). In contrast, epidermal LCs developed nor-

mally in Flt3- and Flt3L-deficient mice (24). We also found

that Flt3L administration in the steady state induces DCs to

proliferate in non-lymphoid tissues suggesting that similar to

what has been found for lymphoid organ DCs, Flt3L plays a

role not only in DC development but also in the homeostasis

of differentiated DCs in the steady state.

Granulocyte macrophage colony stimulating factor (GM-

CSF) is a key cytokine for the differentiation of hematopoietic

progenitors (90, 91) and monocytes (66) into DCs in vitro in

mice and humans. Injection of GM-CSF is used in clinical

studies to attract or generate DCs at disease sites (92, 93).

GM-CSF does not play a role in the development of DCs in

lymphoid organs in the steady state (94) but may play a role

in these tissues during inflammation (95). These results sug-

gested that GM-CSF mainly controlled the development of

inflammatory DCs. Recently, several studies including studies

from our group revealed the role of the GM-CSF receptor in

the development of steady-state DCs in non-lymphoid tissues.

One study showed that absence of the GM-CSF receptor com-

promises the development of CD11b+ DCs but not CD11b)

DCs in the lamina propria (71), whereas our study showed that

among CD11b+ lamina propria DCs GM-CSF receptor controls

only the development of CD103+CD11b+ DCs but not

CD11b+CX3CR1+ DCs (38). In the skin, GM-CSF was shown

to play a role in the development of dermal CD11b+ DCs but

not CD11b) DCs (96). However, the role of GM-CSF in DC

development in sterile tissues remains to be established.

M-CSF is a key cytokine for macrophage development. Mice

that lack M-CSF or its receptor, M-CSFR, lack several macro-

phage populations and develop osteopetrosis owing to the

absence of osteoclasts (97, 98). M-CSF is secreted by endothe-

lia, stroma cells, osteoblasts, and macrophages, and is detect-

able in the steady-state serum and increases upon

inflammation (99). M-CSFR reporter mice in which GFP is

expressed under the M-CSFR promoter revealed that GFP is

expressed by most lymphoid organ DCs, but the exact correla-

tion of GFP levels and the protein expression in these mice

remains unclear (100). Although initially thought to be dis-

pensable for DC development (101, 102), data from our labo-

ratory established that M-CSFR is required for LC development

and mice that lack M-CSFR also lack epidermal LCs (73).

Importantly, in addition to LCs, we recently showed that

M-CSFR plays a role in the development of CD103)CD11b+

DCs in several tissues including the dermis, lung, liver, kid-

ney, and intestine, but is dispensable for the development of

CD103+ DCs in these tissues.

In addition to M-CSF, TGF-b1 is a non-redundant cytokine

for LC development in vivo in mice (8, 103) and for LC differ-

entiation in vitro from human hematopoietic progenitors (104,

105). In the skin, keratinocytes are a source of TGF-b1 and it

has been assumed that exogenous TGF-b1 was critical for LC

development (103). Recent data, however, have challenged

this view as mice in which the absence of TGF-b1 secretion is

restricted to LCs cannot form epidermal LCs (106) suggesting

that an autocrine source of TGF-b1 controls LC development.

These data suggest that the development of non-lymphoid

tissue DCs is regulated by a cytokine network that includes at

least Flt3L, M-CSF, GM-CSF, and TGF-b1. Flt3L plays an

instructive role in the commitment of hematopoietic progeni-

tors into the DC-restricted lineage and plays an additional role

in the homeostasis of tissue CD103+ DCs. M-CSF regulates the

development of CD103)CD11b+ DCs in non-lymphoid tissues

and controls together with TGF-b1, the homeostasis of epi-

dermal LCs. GM-CSF controls the development of dermal

CD11b+ DCs and intestinal CD103+ DCs but does not play a

role in the differentiation of intestinal CD103) DCs.

Transcription factors in the development of

non-lymphoid tissue DCs

Several transcription factors have been shown to control the

development of all lymphoid organ DC populations in vivo.

For example, STAT3, a transcription factor downstream Flt3

signaling and the E-twenty six (ETS) family of DNA-binding

proteins member PU.1 controls the development of lymphoid
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organ CD8a) and CD8a+ cDCs (107–109) and likely plays a

key role in the development of non-lymphoid tissue DCs. We

have recently reviewed elsewhere the role of transcription fac-

tors in the development of lymphoid organ cDCs in vitro and in

vivo (110). Here, we chose to focus on those transcription fac-

tors that were shown to control the development of non-lym-

phoid tissue DC populations.

Interferon-regulatory factor (IRF) belongs to the family of

IRF proteins [formerly also called PU.1 interaction partner

(Pip) or interferon consensus sequence-binding protein

(ICSBP)]. IRF-2-deficient mice have reduced lymphoid

organ CD8a) DCs and slightly reduced epidermal LCs

(111); IRF-4-deficient mice have reduced lymphoid organ

CD8a) DCs and slightly reduced plasmacytoid DCs; whereas

CD8a+ DCs are unaffected (112, 113). IRF-8-deficient mice

have reduced plasmacytoid DCs and lymphoid organ CD8a+

DCs but intact lymphoid organ CD8a) DCs. IRF-8-deficient

mice also have reduced epidermal LCs (114–117), whereas

mice that carry the BXH2 IRF8 mutation have a defect in

the development of CD8a+ DCs but not lymphoid organ

CD8a) DCs or plasmacytoid DCs (118). We have recently

examined whether the development of non-lymphoid tissue

DCs was compromised in mice carrying the BXH2 IRF-8

mice. Although we have not observed the reported reduc-

tion in LC number in these mice, IRF-8) ⁄ ) LCs have much

reduced MHCII expression levels compared with IRF8+ ⁄ +

LCs (Ginhoux and Merad, unpublished data). Strikingly,

IRF8) ⁄ ) mice and mice that carry the IRF8 BXH2 mutation

completely lacked CD103+ DCs but had wildtype levels of

CD11b+ DCs in the dermis, lung, liver, and kidney (24).

Altogether, these results suggest that IRF8 controls the dif-

ferentiation of CD103+CD11b) DCs in most tissues as well

as the development of lymphoid organ CD8a+ DCs, but

does not control the development of CD8a) lymphoid

organ DCs, epidermal LCs, and the development of

CD103)CD11b+ DCs in non-lymphoid tissues.

The inhibitor of DNA-binding protein-2 (Id-2) plays a role

in the differentiation of several hematopoietic lineages and

mice that lack Id2 have a severe reduction of lymphoid organ

CD8a+ DCs, and lack LCs (119). The LC deficiency is thought

to be a result of a defect in TGF-b signaling (119) although

this remains to be clearly established. We recently discovered

that similar to IRF8) ⁄ ) mice, Id2) ⁄ ) mice also lack CD103+

DCs in the dermis, lung, liver, and kidney, whereas CD11b+

DCs were not affected in these mice. Similar to IRF8) ⁄ ) mice,

lamina propria CD03+CD11b+ and CX3CR1+ DCs were not

affected in Id2) ⁄ ) mice, whereas CD103+CD11b) Peyer’s

patches DCs were completely absent in these mice (24).

Using expression profile studies, the transcription factor

Batf3 was found to be highly expressed in DCs compared with

other hematopoietic and non-hematopoietic cells. Batf3-defi-

cient mice have a selective loss of spleen CD8a+ DCs and

dermal CD103+CD11b) DCs, whereas lymphoid organ

CD8a) DCs and dermal CD11b+ DCs remain unaffected in

these mice (120). Whether Batf3 also controls the develop-

ment of CD103+ DCs in other tissues remains to be examined.

Runx3, a member of the runx domain family of transcrip-

tion factors, mediates TGF-b responses. The absence of Runx3

in mature DCs results in the loss of TGF-b-mediated inhibition

of maturation, therefore leading to DC activation and inflam-

mation. Importantly, lack of appropriate TGF-b-induced

Runx3 signaling also leads to a defect in LC development

(119, 121).

These results establish that lymphoid organ CD8a+ DCs and

non-lymphoid tissue CD103+CD11b) DCs are controlled by a

similar group of transcription factors that include IRF8, Batf3,

and Id2, whereas Id2 and Runx3 also control the development

of epidermal LCs. How and at what stage during the develop-

ment these factors control non-lymphoid tissue DC homeosta-

sis remains to be established.

Functional specialization of tissue-resident

non-lymphoid tissue cDCs

Several studies have established the functional diversity of DC

populations in the spleen. CD4+ and CD8a+ splenic DC sub-

sets express different Toll-like receptors, lectin receptors,

phagocytic receptors (122–124) and distinct antigen-process-

ing and presentation machinery (123–126). Splenic CD4+

DCs interact preferentially with CD4+ T cells, whereas CD8a+

DCs are specialized in cross-presentation of cell-associated

antigens to CD8+ T cells (127, 128). In contrast to lymphoid

organ DCs, the heterogeneity of DCs in non-lymphoid tissue

has only been recently established. Next, we review recent

studies that suggest that similar to lymphoid organ DCs, non-

lymphoid tissue DCs are functionally specialized and play

different roles in tissue immunity.

Functional specialization of lung DC subsets

Lung CD103+ DCs and CD11b+ DCs express distinct Toll-

like receptor, cytokine receptor, and chemokine receptor

profile in the steady state (29, 129). The CD11b+ DC sub-

set was shown to be a major secretory cell type and express

high levels of chemokines and cytokine mRNA in the

steady state, whereas CD103+ DCs secrete low levels of

chemokines with the exception of CCL22, is a chemokine
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important in the recruitment of T-regulatory cells and Th2

cells (129).

Lung CD103+ DCs have also been shown to have a lower

capacity to capture soluble ovalbumin (OVA) compared with

lung CD11b+ DCs (130, 131). Despite lower ability for phago-

cytosis, purified lung CD103+ DCs were much more efficient

in the steady state at presenting antigens to OVA-specific T cell

receptor (TCR) transgenic CD8+ T cells (OT-I) but not to OVA-

specific TCR transgenic CD4+ T cells (OT-II), whereas CD11b+

DCs presented antigens to OT-II but not to OT-I cells (131).

As CD103+ DCs are developmentally related to CD8a+ DCs,

it is possible that they are also better at cross-presenting OVA

to CD8+ T cells. Interestingly, the lectin CLEC9A is recently

shown to be required for the cross-presentation of necrotic

cell-associated antigens to CD8+ T cells (124). This lectin is

expressed by splenic CD8a+ but not CD4+ DCs (124) and also

by a population of circulating blood DCs in humans (132).

We recently discovered that CLEC9A is expressed specifically

on lung CD103+ DCs but not CD11b+ DCs again emphasizing

the similarity between non-lymphoid tissue CD103+ and lym-

phoid organ CD8a+ DCs (J. Helft, C. Reis e Sousa, and M.

Merad, unpublished data).

Ex vivo assays in which specific DC populations isolated at dif-

ferent times after microbial infections are cultured with either

polyclonal or antigen-specific transgenic T cells have largely

been used to compare the ability of tissue-migratory DCs and

resident lymphoid organ DCs to present viral antigens to CD4+

and CD8+ T cells in the LN. Although this assay does not take

into account differences in susceptibility to pathogens, micro-

bial-induced cellular damage as well as differences in migra-

tory abilities between different DC populations, it still provides

information on which DC subset has the potential to present

viral antigens to LN T cells. Upon lung infection with influenza

or HSV infection, the migratory CD11blow DC subset (presum-

ably CD103+ DCs) purified from the lung-draining LN was

more efficient at priming antigen-specific TCR transgenic naı̈ve

CD8+ T cells (133, 134) but not memory CD8+ T cells (135),

whereas both CD103+ and CD11b+ DCs were efficient at prim-

ing viral antigen-specific TCR-transgenic CD4+ T cells (134).

These results suggest that although both CD103+ DCs and

CD11b+ DCs can acquire viral antigens, CD103+ DCs are better

equipped to prime antiviral CD8+ T-cell response (134).

Transgenic mice models expressing the DTR under the

mouse langerin promoter have been used recently to specifi-

cally deplete langerin+ cells upon DT injection and to assess the

role of langerin+ DCs in vivo. In the lung CD103+ DCs express

langerin and DT administration to langerin-DTR transgenic

mice eliminates lung CD103+ DCs but spares lung CD11b+

DCs (136). Upon infection with influenza virus, langerin-DTR

mice that received DT develop more severe lung infection

symptoms compared with control mice (136). However, DT

administration in langerin-DTR mice also partially depletes

LN-resident CD8a+ DCs as a subset of these cells express lang-

erin (J. Helft and M. Merad, unpublished data) making it diffi-

cult to distinguish the contribution of lung CD103+ DCs and

LN CD8a+ DCs to the induction of lung immunity to influenza

virus in this model. Altogether, these studies suggest the supe-

rior ability of lung CD103+ DCs to present viral and innocuous

antigens to CD8+ T cells. However, the exact contribution of

the lung CD103+ DC subset to lung immunity in vivo and the

exact mechanisms underlying their greater ability to prime

CD8+ T cells remain to be established.

In contrast to CD103+ DCs, CD11b+ DCs are difficult to dis-

tinguish from monocyte-derived DCs that rapidly accumulate

in inflamed tissues. Therefore, studies on the role of CD11b+

DCs in inflamed lungs can reflect the role of tissue-resident

DCs or newly recruited monocyte-derived DCs or both. In a

mouse model of airway allergic inflammation, airway

CD11b+ but not CD11b) DCs were able to present the allergen

for weeks after antigen exposure and played a major role in

the activation of antigen-specific Th2 cells locally in the lung

(137). In mice infected with Mycobacteria tuberculosis, lung

CD11b+ but not CD11b) DCs were responsible for the secre-

tion of interleukin-12, a cytokine that is required for main-

taining protective Th1 immunity against the Mycobacterium

(138). In mice infected with influenza virus, pulmonary

CD11b+ DCs were also required for the recruitment of circu-

lating DCs and plasmacytoid DCs to the lung and for the

amplification of CD8+ T-cell response (139), a role also

shown for monocyte-derived DCs (140).

Role of cutaneous DCs in skin anti-microbial immunity

Epidermal LCs were thought to be the main DC population to

control skin immunity. However, the recent identification of

the diversity of the dermal DC compartment (5) (Fig. 1)

together with the discovery that upon skin infection with HSV

LCs are unable to present viral antigens to T cells in the drain-

ing LN (141) reignited a series of studies on the role of cuta-

neous DCs in skin immunity. In this initial study, purified

CD8a+ DCs isolated from skin-draining LNs but not

skin-migratory DCs were able to prime naı̈ve viral-specific

TCR-transgenic T cells in an ex vivo DC ⁄ T cell co-culture assay,

leading to the hypothesis that the main role of skin-migratory

DCs is to transport and deliver antigens to LN CD8a+ DCs. In

contrast, upon injection of a lentiviral vector into the skin,
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cutaneous migratory DCs were able to present antigens to T

cells (142). Because HSV is highly cytolytic while lentivirus is

not, it has been proposed that the inability of LCs to present

viral antigens could be owing to virus-induced cellular damage.

Skin infection with HSV-1 leads to two phases of acute viral

replication in the skin: a primary infection that is limited to

the site of scarification and a secondary viral recrudescence

phase involving the entire innervated dermatome. Using ex vivo

assays the same group showed that although lymphoid organ

CD8a+ DCs are uniquely able to activate antigen-specific naı̈ve

TCR-transgenic CD8+ T cells during the first wave of infection

(141), dermal CD103+ DCs but not dermal CD11b+ nor LCs

were able to present antigens to naı̈ve TCR-transgenic CD8+

T cells ex vivo (143). In contrast, all migratory DCs including

LCs, dermal CD11b+ DCs and dermal CD103+ DCs were able

to present viral antigens to CD4+ T cells in ex vivo culture

assays. These results suggest that although the three cutaneous

DC populations acquired viral antigens only, CD103+ DCs

were able to present viral antigens to CD8+ T cells. It remains

unclear as to whether CD103+ DC interaction with CD8+

T cells ex vivo results from direct presentation of viral antigens

or cross-presentation of infected epithelial cells. In addition,

the exact contribution of CD103+ DCs to HSV immunity

in vivo remains to be established.

The preferential ability of dermal CD103+ DCs to interact

with CD8+ T cells, observed in the second wave of HSV infec-

tion and in lung immunization has also been observed in a

model of cutaneous leishmaniasis infection model. In this

model, depletion of CD103+ dermal DCs using the langerin-

DTR transgenic mice impaired the priming of CD8+ T cells,

whereas the CD4+ T-cell response remained intact (144).

However, it remains possible that lymphoid organ CD8a+ DCs

also participated in the induction of a CD8+ T-cell response in

this model as a proportion of CD8a+ DCs in lymphoid organs

are also depleted upon DT administration in langerin-DTR

mice, as discussed before.

Similarly, Batf3) ⁄ ) mice, which lack lymphoid organ CD8a+

DCs but not CD4+ DCs, are unable to mount an efficient antivi-

ral CD8+ T-cell response against subcutaneous infection with

West Nile virus. Failure to mount antiviral responses in this

model has been attributed to the absence of lymphoid organ

CD8a+ DCs (120). However, dermal CD103+ DCs are also

absent from these mice and the exact contribution of dermal

CD103+ DCs and LN-resident CD8a+ DCs in the control of cuta-

neous West Nile virus infection remains to be examined (120).

In contrast to dermal CD103+ DCs, dermal CD11b+ DCs

play a critical role in the local expansion of effector and regu-

latory T cells (145). Upon skin immunization with incom-

plete Freud adjuvant to mimic chronic skin inflammation,

dermal CD11b+ DCs were shown to control the induction of

cytokine production by CD4+ effector and regulatory T cells

that have infiltrated the inflamed skin, despite the fact that all

DC subsets including LCs and CD103+ DCs were able to pres-

ent MHCII ⁄peptide complexes at their surface (145). Whether

these dermal CD11b+ DCs derive from circulating monocytes

or whether they represent tissue-resident DCs that present

antigens for prolonged periods of time as found in chronic

inflamed lung (137) remains to be examined.

These data suggest that CD103+ DCs play an important role

in the priming of CD8+ T cells, whereas CD11b+ DCs play a

key role at the site of the infection. However, these results

remain to be confirmed in vivo through the use of tools

allowing the conditional deletion of specific DC subsets.

Role of cutaneous DCs in allergic contact dermatitis

Induction of contact hypersensitivity responses (CHS) to hap-

tens is commonly used as a mouse model for allergic contact

dermatitis. Two mouse models have recently been used to

revisit the role of LCs in CHS. These models include the lang-

erin-DTR transgenic mouse expressing DTR under the mouse

langerin promoter (46, 146) and the langerin-DTA mice,

which express the DT A under the human langerin promoter

(147). Studies using the langerin-DTR mouse model have

shown that CHS is either slightly reduced or unaffected after

DT administration (46, 146). Subsequent studies have shown

that two cutaneous DC populations can lead to CHS. These

include the LCs when hapten administration is restricted to

the epidermis or the dermal CD103+ DCs when the hapten

diffuses to the dermis (148, 149). In contrast to these results,

the use of the langerin-DTA transgenic mouse revealed that

CHS is increased in the absence of LCs, revealing a potential

tolerogenic role for LCs in the skin (147). Important differ-

ences exist between these two mice models. In the langerin-

DTA model, LCs are absent from birth but dermal CD103+

DCs remain unaffected because the human langerin promoter

is not expressed in these cells. In contrast, in the langerin-

DTR model both LCs and dermal CD103+ DCs are condition-

ally depleted upon DT administration (20–22). To distinguish

the contribution of LCs and dermal CD103+ DCs in the stud-

ies discussed before (148, 149), immunization was adminis-

tered either 1 or 7 days after DT administration as dermal DC

repopulate much faster than LCs after DT administration.

These studies found that immunization 7 days after DT lead

to a decreased CHS response when hapten administration was

restricted to the epidermis suggesting a role for LCs in the

Helft et al Æ Homeostasis of non-lymphoid tissue DCs

66 � 2010 John Wiley & Sons A/S • Immunological Reviews 234/2010



induction of T effector cell response against epidermal anti-

gens (148, 149). However, it now appears that the repopula-

tion of dermal CD103+ DCs is slower than initially

anticipated and it is possible that incomplete CD103+ DC

repopulation 7 days after DT treatment rather than LC abla-

tion interfered with the induction of a strong CHS response

in these studies (148, 149). The development of a conditional

LC mouse model in which DTR is controlled by the human

langerin promoter, should help settle the contribution of LCs

in CHS.

Role of cutaneous DCs in tolerance

In transgenic mice expressing membrane-bound OVA under a

keratinocyte promoter, LCs and dermal DCs were found to

cross-present keratinocyte-associated OVA to CD8+ T cells.

Importantly in this model, LCs and to a lesser degree dermal

DCs lead to the deletional tolerance of CD8+-specific T cells,

whereas the contribution of CD8a+-resident LN DCs in this

process appeared to be limited (150). More recently, a study

from the same group infirmed the role of LCs in the presenta-

tion of self-antigens by showing that dermal CD103+ DCs are

the only cutaneous DC population able to present OVA to

OVA-specific TCR-transgenic T cells in this system (143). The

discrepancy between the two studies remains to be explained

by the authors but it is possible that improved characterization

of the cutaneous DC populations that exist in the skin have

helped identify the role of CD103+ DCs in this model. It is

unclear, however, whether CD103+ DCs can also lead to dele-

tional tolerance of CD8+ T cells.

The proportion of regulatory T cells among total CD4+

T cells is higher in the dermis in the steady state compared

with the blood (F. Ginhoux, J. Helft, and M. Merad, unpub-

lished data). The contribution of cutaneous DC populations if

any in the homeostasis of T-regulatory cells has still not been

clearly established. However, it is important to note that

Batf3) ⁄ ) mice that lack dermal CD103+ DCs and LN CD8a+

DCs do not develop overt autoimmunity suggesting that

cross-presentation of tissue antigens may not be required to

maintain tissue integrity in mice (120).

Functional specialization of lamina propria DC subsets

Several studies have established that mouse and human lamina

propria DCs directly sample luminal antigens by extending

dendrites through the epithelial cell monolayer into the

lumen without compromising the epithelial cell integrity

(37, 151, 152). The ability of lamina propria DCs to penetrate

the epithelium is thought to provide a mechanism by which

apoptotic epithelial cells (151, 153), commensals, and

enteric pathogens (37, 154) can be captured and transported

to the mesenteric LN. In mice, the formation of DC transepi-

thelial projections is dependent on Toll-like receptor signal-

ing by epithelial cells (152) and these projections accumulate

in the proximal (152) and terminal ileum (37). DC projec-

tions in the terminal ileum are dependent on the expression

of the fractalkine (CX3CL1) receptor (CX3CR1) by intestinal

DCs (37).

In the rat, DCs that constitutively transport apoptotic cells

to the draining LN express CD103 (153). Consistently, we

found that CD103+ DCs that lack CX3CR1 expression are the

main DC population to constitutively migrate to the mesen-

teric LN (38) (Fig. 3). Although CD103+ DCs lack CX3CR1

precluding them from sampling antigens through CX3CL1-

dependent intraepithelial protrusions (37, 155), they might

use several other mechanisms to acquire luminal antigens.

Expression of the integrin CD103 by these cells, through its

interaction with the epithelial cell adhesion molecule E-cadh-

erin (25), may promote DC homing to the epithelia facilitat-

ing the sampling of cell-associated antigens (Fig. 3). The

ability of CD103+ to form transepithelial projections may

explain the presence of CX3CR1-independent projection in

mice proximal ileum (152). Another possibility is that

CD103+ DCs acquire antigens directly through Peyer’s

patch-independent M cells (156) or through the cross-pre-

sentation of CD103)CD11b+CX3CR1+ lamina propria DC-asso-

ciated antigens.

Role of lamina propria DCs in Salmonella infection

Salmonella typhimurium (Salmonella) is a facultative intracellular

pathogenic bacterium that causes typhoid-like disease in mice.

Entero-invasive Salmonella efficiently infiltrate M cells located in

the follicle-associated epithelium (FAE) that lines the Peyer’s

patches (157, 158). Salmonella can also infiltrate the gut

through DC-derived transepithelial projections (37, 151). The

development of non-invasive Salmonella strains and the use of

genetically labeled DCs have revealed the key role for

CX3CR1+ DCs in the translocation of non-invasive Salmonella to

the gut (37, 159).

Entry of Salmonella via M cells delivers bacteria directly into

DCs located in the sub-epithelial dome of Peyer’s patches

(160), whereas capture of Salmonella by transepithelial DC pro-

jections delivers the Salmonella to the lamina propria and the mes-

enteric LN. These different entry routes have been shown

to affect tissue immunity to Salmonella. Penetration through
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M cells is required to induce anti-Salmonella immunoglobulin

A (IgA) response, whereas Salmonella that have infiltrated

through M cells or through transepithelial DC projections are

equally capable of migrating to the mesenteric LN and induce

systemic immunity (161).

Using a Salmonella oral infection model in streptomycin-pre-

treated mice to enforce pathogen invasion through the epithe-

lia rather than Peyer’s patches (162), we found that

CD103+CD11b+ lamina propria DCs were the first DC population

to transport the pathogen to the mesenteric LN. DC ability to

transport antigens from the intestinal tract to the mesenteric

LN participates in the systemic dissemination of Salmonella via

the blood stream (163). This was most clearly shown in a

model of Salmonella infection, in which the inability of DCs to

sense the pathogen compromised its transport to the mesen-

teric LN and improved the infection outcome by reducing the

systemic dissemination of the pathogen (164). Similarly, oral

infection of Flt3-deficient mice, which lack CD103+ but not

CX3CR1+ DCs in the lamina propria, have a reduced amount of

Salmonella in the mesenteric LN to a degree comparable with

that of CCR7-deficient mice (38). Altogether, these results

suggest that upon Salmonella oral infection CD103+CD11b+

DCs play a key role in the early transport of pathogens to the

draining LN. However, the exact role for CD103+ and

CX3CR1+ lamina propria DCs in the outcome of Salmonella infec-

tion in vivo remains to be examined.

Role of lamina propria cDCs in IgA production

Secretory IgA produced by intestinal B cells play multiple pro-

tective roles including immune antigen exclusion by entrap-

ping dietary antigens and microorganisms and preventing

their entry in the gut (165). One striking feature in gut

immunity is to produce massive amounts of non-inflamma-

tory IgA antibodies (165). Peyer’s patches and to a lesser

extent, isolated follicles represent a major source for the pro-

duction of IgA (reviewed in 166). However, production of

IgA in extrafollicular sites has also been observed in human

and mice (167). B-cell production of IgA in extrafollicular

sites is controlled in part by lamina propria DCs shown to have

B-cell licensing functions implicated in class switching (167).

Naturally occurring lamina propria tumor necrosis factor (TNF)

and inducible nitric oxide synthase (iNOS)-producing DCs

also control IgA production in a TGF-b-dependent manner

(168). The role of each lamina propria DC population in IgA pro-

duction remains to be examined.

Fig. 3. Diversity of lamina propria (LP) dendritic cells (DCs). (A) Distribution and phenotype of DCs in the intestinal LP and muscularis layer. (B) LP
CD103+CD11b+ DCs originate mainly from pre-DCs, whereas LP CD103)CD11b+ DCs derive from circulating monocytes. (C) In the ileum,
CD103)CD11b+ DCs have been shown to sample luminal antigens by extending dendrites through the epithelial monolayer and into the lumen under
the control of CX3CR1. CD103+CD11b+ DCs are found in the apical villi and in the intraepithelial cell fraction. They lack CX3CR1, and their ability to
uptake luminal antigens remains to be analyzed. Although CD103)CD11b+ DCs can sample luminal antigens, they express low levels of CCR7 and
likely do not constitutively migrate to the mesenteric lymph node (LN) in the steady state. (D) After oral infection with invasive Salmonella, both subsets
uptake Salmonella, but CD103+CD11b+ DCs are the first to transport the pathogen to the draining LN. (E) LP and mesenteric LN CD103+ DCs but not
CD103) DCs promote ex vivo differentiation of naı̈ve T cells into Foxp3+ T-regulatory cells, which correlate with a greater ability to produce retinoic
acid. The role of each LP DC subset in the induction in T- and B-cell effector function in vivo has not been examined.
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Role of lamina propria cDC subsets in tolerance

DCs constitutively transport commensal bacteria (154) and

apoptotic epithelial cells to the mesenteric LN (153). Impair-

ment in constitutive mucosal DC migration to the mesenteric

LN in mice that lack CCR7 leads to impaired oral tolerance

(169) strongly suggesting a role for mucosal DCs in the main-

tenance of intestinal integrity.

DCs from the lamina propria of the small intestine have been

shown to be significantly better than splenic DCs at inducing

the conversion of naı̈ve Foxp3) T cells into Foxp3+ T cells

in the presence of exogenous TGF-b (170, 171). Intrigu-

ingly, mesenteric LN CD103+ DCs are much more efficient

than mesenteric LN CD103) DCs at inducing the conversion

of naı̈ve T cells into Foxp3+ T cells through TGF-b (171).

The superior ability of CD103+ DCs to induce regulatory T

cells in the gut is partially explained by their higher expres-

sion of the enzyme Raldh that controls the metabolization of

vitamin A into retinoic acid, a dietary metabolite, required

in the differentiation of mucosal Foxp3+ regulatory T cells

(170, 171). Importantly, conditional loss of TGF-b-activat-

ing integrin avb8 by CD11c+ cells results in spontaneous

autoimmune disease that selectively affects the gut (172)

and DCs that lack avb 8 fail to induce regulatory T cells in vitro

(172).

In addition to their role in the induction of regulatory

T cells, lamina propria and mesenteric LN CD103+ DCs are much

more efficient than CD103) DCs at inducing the expression of

gut homing molecules on T lymphocytes (35, 36). Similar

results were obtained in humans, in which mesenteric LN

CD103+ DCs were found to have a higher ability to induce the

expression of gut homing T cells on naı̈ve T cells (36). The

superior ability of CD103+ DCs to induce gut homing recep-

tors on effector T cells may also be dependent on their supe-

rior ability to metabolize vitamin A as retinoic acids control

the induction of gut homing receptors on T (173) and B cells

(174).

Role of monocyte-derived DCs in tissue immunity

Upon inflammation, tissue-resident DCs are replaced by

blood-born DCs that derive mainly from circulating mono-

cytes (4). A subset of these cells produces TNF- and NO-

mediated microbiocidal mediators. TNF- and NO-producing

DCs were found in the spleen of mice infected with Listeria

monocytogenes and shown to contribute to innate immunity

against Listeria but were not involved in the induction of Lis-

teria-specific T-cell responses (175). Monocyte-derived DCs

were also found in the lungs of mice infected with influ-

enza virus (140). Although, they were shown to promote

deleterious lung inflammation in this model they also con-

tributed to the amplification of local CD8+ T effector cells

(140).

Upon administration of the pro-inflammatory haptens 2,4-

dinitrofluorobenzene or measles virus nucleoprotein that

have intrinsic adjuvant properties, monocyte-derived DCs

accumulated in the buccal mucosa induced in a CCR6-depen-

dent manner and were essential for the cross-priming of

OVA-specific CD8+ T cells (75). Induction of antigen-specific

CD4+ T-cell responses during skin Salmonella infection have

also been claimed to rely on the recruitment of monocytes to

the dermis, in a CCR6-dependent mechanism (176). In a

mouse model of Leishmania major infection in which high dose

of parasites were injected subcutaneously in the foot pad,

monocyte-derived DCs that form in the dermis and subse-

quently migrate to the draining LN wrere required for the

induction of protective Th1 responses against the parasite

(74). Importantly, in HSV-infected skin, monocyte-derived

DCs were also required for the reactivation of memory CD8+

T cell at the tissue site and for the control of the infection

(177).

Division of labor for optimal immune response

Tissue-migratory DCs, tissue non-migratory DCs, lymphoid

organ-resident DCs, and monocyte-derived DCs have all been

shown to participate in the induction of tissue immunity.

Although the exact contribution of each DC population needs

to be examined in the same experimental model, it is likely

that optimal immune responses result only from a successful

collaboration between these DC populations. A potential sce-

nario for an integrated role of each DC subset in the induc-

tion of a successful immune response is described in Fig. 4.

Tissue-migratory DCs could be responsible for the transport

of tissue antigens and the initiation of a CD8+ T-cell response

before dying in the LN. Once dead, their antigen cargo is

reprocessed by tissue-resident CD8a+ DCs that are specialized

in the priming of CD8+ T cells but potentially also by CD4+

DCs specialized in the priming of CD4+ T cells. The reason

for the specialized interaction between lymphoid organ DC

subsets and specific T-cell subsets is unclear. However, the

benefit of having a DC compartment removed from the site

of injury able to relay tissue-migratory DC in T-cell presenta-

tion is likely critical for the induction of strong T-cell immu-

nity to tissue antigens. Monocyte-derived DCs recruited to

non-lymphoid tissues will subsequently replace tissue-migra-
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tory DCs, capture tissue antigens, and migrate to the LN

where they also participate in the induction of a strong effec-

tor T-cell response. Monocyte-derived DCs or non-migratory

tissue DCs that are present in inflamed tissues participate in

the activation of effector or memory T cells that infiltrate the

inflamed tissue. DCs located at the epithelial interface such as

epidermal LCs, however, may not have the privilege to prime

CD8+ T-cell immune responses to avoid collateral damage at

critical interfaces.

These results underline the sophistication of the DC network

in the induction of tissue immunity and further emphasize the

shift from an old lymphocyte-centric view to a more recent

myeloid-centric view in the control of tissue immunity. We are

only at the beginning of our understanding of the role of this

intricate network of cells upon different types of injury. A bet-

ter understanding of the contribution of antigen-presenting

cells in the induction of tissue immunity will undoubtedly

change the treatment and prevention of immune diseases.

Fig. 4. Functional diversity of dendritic cell (DC) subsets. (A) Non-lymphoid tissue DCs in proximity with the epithelia capture self and pathogenic
antigens prior to migrating to regional draining lymph node (LN) where they present tissue antigens to T lymphocytes. (B) In the LN, resident DCs
also present tissue antigens to T cells. The mechanisms by which lymphoid organ DCs capture tissue antigens are not entirely established. (C) Naı̈ve
T cells should be able to sample antigens from several DC populations. How antigen presentation is coordinated between different DC subsets is still
unclear. However, it is now clear that tissue-migratory CD103+ DCs and lymphoid organ-resident CD8a+ DCs seem to be more efficient in the cross-
presentation of extracellular antigens to CD8+ T cells, whereas tissue-migratory CD11b+ DCs and lymphoid organ-resident CD8a) DCs are more effi-
cient in the major histocompatibility complex class II presentation pathway. (D) CD11b+ DCs play a key role in amplifying CD4+ effector T cells and
memory CD8+ T cells that have infiltrated inflamed tissues. Whether these cells represent tissue-resident DCs that remain in the inflamed tissue or
whether they represent newly recruited monocyte-derived DCs remains to be examined.
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