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In clinical practice, hematopoietic cell transplantation (HCT) is now recognized as a powerful means of
delivering effective cellular immunotherapy for malignant and non-malignant diseases. In patients with
severe hematological malignancies, the success of allogeneic HCT is largely based on immunologic graft-
versus-tumor (GVT) effects mediated by allogeneic T lymphocytes present in the graft. Unfortunately,
VT
elayed donor lymphocyte infusion
ost DC vaccine

this beneficial effect is counterbalanced by the occurrence of graft versus host reactions directed against
normal host tissues resulting in graft versus host disease (GVHD), a potentially life-threatening com-
plication that limits the success of allogeneic HCT. Therefore, while preserving beneficial GVT effects,
a major objective in allogeneic HCT is the prevention of GVHD. Studies in the last decade revealed the
central role of dendritic cells and macrophages in modulating graft versus host immune reactions after
allogeneic HCT. In this review, we summarize recent progress and potential new therapeutic avenues

stra
using dendritic cell-based

. Introduction

Dendritic cells (DCs) are specialized, bone marrow-derived
eukocytes critical to the onset of both innate and adaptive
mmunity against pathogens [1]. In the setting of allogeneic
ematopoietic cell transplantation (HCT), major or minor histo-
ompatibility antigens (miHA), rather than microbial products,
re the antigenic stimuli [2]. Host histocompatibility antigens
timulate donor T cells against the recipient leading to graft
ersus host (GVH) reactions. GVH reactions eradicate the recipient
ematopoiesis including the malignant clone and often damages
eripheral tissues, causing graft versus host disease (GVHD). Host
C have a unique role in the transplant setting as they present
ajor histocompatibility antigens or miHA to donor CD8+ T cells

uch more efficiently than donor-derived DC [3]. In addition to
C, we recently found that recipient macrophages also play a key

ole in the modulation of post-transplant immune responses. As DC
nd macrophages are bone marrow-derived, it has been assumed

Abbreviations: DLI, donor lymphocyte infusion; GVHD, graft versus host disease;
VT, graft-versus-tumor; HCT, hematopoietic cell transplantation; miHA, minor
istocompatibility antigen; LC, Langerhans cell; TAA, tumor associated antigen.
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that hematopoietic cell transplantation leads to the replacement of
host DC by donor DC in a similar kinetic in the blood, bone marrow
and distant organs. However, it emerges that DC and macrophage
homeostasis is more complex and depends on the site, nature of
transplant, intensity of the conditioning regimen, dose of donor T
cells, and age-related variables. Recent data also established that
DC are formed of different subsets that are diverse in origin and
function and revealed that specific DC populations play distinct
roles in tissue immunity. Understanding the role of DC subsets and
macrophages in patients undergoing allogeneic HCT is critical since
the quantity and quality of the graft versus host response is one of
the main factor that control the outcome of transplantation.

2. Allogeneic hematopoietic cell transplantation

Allogeneic HCT was initially developed to allow the delivery
of myeloablative doses of radiation and/or chemotherapy and
increase killing of tumor cells in patients with hematological
malignancies. However, such high dose chemotherapy regimen
also results in the permanent loss of the patient bone marrow
function, requiring rescue with donor hematopoietic progenitors
also called “the graft”, which are administered as an intravenous

infusion. Engraftment of donor allogeneic hematopoietic cells is
facilitated by myelo-suppressive and immuno-suppressive condi-
tionings given just prior to the infusion of donor cells. Typically the
donor hematopoietic graft is enriched in hematopoietic progenitors
and donor allogeneic T cells but also contain DC precursors, mature

dx.doi.org/10.1016/j.smim.2011.01.005
http://www.sciencedirect.com/science/journal/10445323
http://www.elsevier.com/locate/ysmim
mailto:miriam.merad@mssm.edu
dx.doi.org/10.1016/j.smim.2011.01.005
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ig. 1. Host DC control the induction of GVH reactions. Pre-transplant condition
omplement production, and bacterial translocation due to loss of intestinal mucos
attern (DAMP), pathogen associated molecular pattern (PAMP), inflammatory cyt
iHA. Tissue inflammation facilitates the recruitment of T cells that recognize tissu

xpressed on hematopoietic cells eradicate host hematopoiesis including the malig

C and plasmacytoid DC. Allo-HCT outcome is largely dependent
n the extent of immune reconstitution and the balance between
eneficial immunological responses against hematological malig-
ancies, graft-versus-tumor (GVT) effect, and detrimental GVHD.
any parameters, such as the intensity of the conditioning reg-

men and sources of hematopoietic cells, donor T-cell dose and
egree of major histocompatibility antigens and miHA diversity
odulate allogeneic HCT outcome (Fig. 1). The recent realization

hat donor T cells rather than high dose chemotherapy control the
radication of host malignant cells after allogeneic HCT has brought
proliferation of non-myeloablative and reduced intensity condi-

ioning regimens that shift the burden of disease eradication from
ytotoxic chemoradiation to GVT effects [4–6]. Although the use of
ower dose conditioning regimens has reduced host tissue damage
nd allogeneic HCT related morbidity, GVHD incidence continue
o remain the main limitation of reduced intensity allogeneic HCT
rocedures [5,7].

. The graft versus host response: graft versus host and
raft versus tumor response

.1. Antigen specific immune recognition in allogeneic
ransplants (see Fig. 2)
In MHC-matched transplant, miHA derive from recipient’s poly-
orphic proteins that differ from those of the donor. Most miHA

epresent allelic forms of normal proteins that arise due to single
ucleotide polymorphisms (SNP) [8], although differential expres-
ion may also occur as a result of gene deletion [9]. Twenty
gimen leads to host tissue damage, release of inflammatory cytokines, increased
grity and cell death. Host DC activation triggered by damage associated molecular

s or complement migrate to lymphoid organs and prime donor T ells against host
ific miHA and promote the development of GVHD. CD8+ T cell that recognize miHA
lone leading to GVT.

autosomal encoded miHA and 10 Y-chromosome encoded miHA
have been discovered to date and the list is rapidly expanding
[10,11]. Because allogeneic HCT are performed mainly in the con-
text of hematological malignancies many miHA that are present
on hematopoietic cells are likely also expressed by the malignant
cells. The frequency of a T cell reacting miHA has been estimated
to be approximately 1 in 106. In the MHC-mismatch setting, MHC-
molecules are recognized directly by donor T cells with variable
contribution of MHC-bounded peptide and frequency of alloreac-
tive T cells in this mode has been estimated to 1 in 102–103 which
results in a much stronger primary T cell proliferation response
[12].

In contrast to solid tumor associated antigens, all miHA
expressed by the malignant hematopoietic clone should theoreti-
cally be able to elicit donor T cell responses since the donor immune
system is not tolerant to these antigens. The clinical manifestations
of immune responses against miHA are likely to be determined by
the specific tissue expression of the proteins encoding these anti-
gens. miHA constitutively expressed in many tissues are likely to
be targets for a combined alloreactive immune response directed
against the host tissue and the tumor, and lead to GVHD and
GVT. Whereas, T cell responses directed against antigens that are
restricted to the hematopoietic system including the malignant
hematopoietic cell clone are likely to mediate GVT reactivity with-
out severe GVHD [13–15].
3.2. Graft versus host disease (Fig. 1)

Acute GVHD is defined as a progressive, systemic disease char-
acterized by immuno-suppression and inflammation of the skin,
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iver and intestines. GVHD occurs in 10–50% of patients even
ith HLA-identical sibling donors [16] and leads to death in up

o 25% of patients [17]. The complex pathophysiology involves
ost tissue damage, which results from the conditioning regi-
en, inflammatory cytokines (such as tumor-necrosis factor-�,

nterferon-�, interleukin-1 (IL-1), IL-2 and IL-12, and effector cells
hat include cytotoxic T lymphocytes (CTLs), natural killer (NK)
ells and macrophages [18]. In addition to acute GVHD, recipi-
nts of allogeneic HCT are at risk of developing chronic GVHD,
pleiotropic syndrome with similarities to autoimmune diseases

19,20]. Despite the complexity of these processes, T-cell deple-
ion of the donor hematopoietic cell graft remains one of the most
ffective ways to prevent GVHD in animal models and patients
llustrating the importance of allo-reactive donor T cells in the
evelopment of acute and chronic GVHD [21–23].

.3. Graft-versus-tumor activity (Fig. 1)

A major conceptual advance in transplantation occurred with
he recognition that immunological activity of donor T cells not
nly causes GVHD but is a critical factor in eradicating residual
ecipient hematopoiesis and malignancy [24–26]. Although donor
cell depletion reduces GVHD, it also leads to increased relapse

isk [23]. The potential of donor T cells to secure remission is most
ramatically demonstrated by the use of donor lymphocyte infu-
ion (DLI) to treat post-transplant relapses [27–29]. Several miHA
hat drive GVH reactions have now been identified, allowing cellu-
ar responses to be monitored directly [13,14,30–32]. GVT is likely
o be a manifestation of the GVH response in hematopoietic tissues
nd therefore dependent on the same cellular process of induc-
ion [33–35]. GVT appears to occur at a lower threshold than GVHD
n studies of escalated DLI in mice and humans [36,37] suggesting
hat the hematopoietic tissue is the most sensitive target organ of
onor immune responses. This suggests that it may be possible to
ake advantage of a therapeutic window in the GVH response to
eparate GVT from GVHD. Understanding the homeostasis of anti-
en presenting cells and how this controls the induction of donor
mmunity is vital to this aim.

. Experimental models to study graft versus host response
for a complete review see Ref. [38])

Mouse models of allogeneic HCT have been critical for our
nderstanding of the mechanisms that control allogeneic recog-
ition. In contrast to humans, mice after a single dose of total body

rradiation, is able to accommodate completely mismatched trans-
lants without post-transplant immunosuppression. This may be
ue to lower minor antigenic diversity and decreased exposure
o infection in mice compared to humans. Despite these differ-
nces, murine GVHD shows many parallels with human disease
nd may be scored by lethality, weight loss or changes in posture
nd fur texture. However, it is important to take into consideration
ey variables that include: (1) the cytotoxic regimen, (2) the type
nd number of donor immune cells infused, (3) the degree of MHC
ismatch and (4) the strain combination.

. Role of DC subsets in graft versus host reactions
Figs. 2 and 3)

In the artificial setting of transplantation, host and donor-

erived DC coexist for several days in recipients after allogeneic
CT. Host DC are uniquely suited to present miHA or MHC
olecules directly to CD8+ T cells, whereas donor DC initiate

D8+ T cell effector responses only though a process called cross-
resentation in which host cell associated antigens are loaded and
Immunology 23 (2011) 50–57

presented in the MHC class I compartment. Several lines of work
suggest that direct presentation of host antigens plays a key role in
initiating graft versus host responses after allogeneic HCT.

5.1. Host DC prime donor T cells to induce GVHD in lymphoid
organs during the first few days following allogeneic HCT

Acute GVHD is primarily a cell-mediated disorder. The interac-
tion between donor T cells present in the graft and hematopoietic
cells in lymphoid organs was first demonstrated by the elegant
experiments of Sprent and colleagues (reviewed in [3]). In these
studies, recipient mice were infused with T cells, which were later
collected from the efferent lymph by cannulation of the thoracic
duct. Alloreactive T cells were initially trapped in the lymphoid
organs for 24–48 h and then emerge primed to induce GVHD. The
critical role of host APC in the induction of GVHD has been demon-
strated in experiments showing that bone marrow chimeric mice,
in which host hematopoietic cells are unable to prime donor T cells
are protected from GVHD after allogeneic HCT [39–42], whereas
alloantigen expression on host target epithelium is not essential for
allo-reactive T cell attack of the skin, liver, and intestine of recipi-
ent animals [40]. Donor APC play a supplementary role and are able
to augment acute GVHD through cross-presentation [41,43]. They
are also equivalent to recipient APC in initiating CD4-mediated
chronic GVHD [44]. Further work confirmed the importance of host
DC compared with other APC and demonstrates that recipient DC
‘add-back’ is sufficient to induce GVHD in chimeric recipients in
which host APCs were syngeneic to donors or were deficient in
MHC [45,46]. While it is assumed that DC play a significant role,
the role of plasmacytoid DC remains unclear and studies have sug-
gested that host plasmacytoid DC aggravate [47] or improve GVHD
[48].

5.2. Host DC control GVT

Immunological protection from relapse, or GVT effect, is likely
to be a manifestation of the GVH response in hematopoietic tissue
and therefore dependent on the same cellular process of induction
[33,34]. Transient pancytopenia often accompanies donor lym-
phocyte infusion responses [49] and is the cardinal feature of
transfusion-associated GVHD [50] indicating that BM is indeed a
target organ of the engrafting immune system.

Animal models also established the key role of recipient, but
not donor APC for GVT mediated by CD4+ and CD8+ cells [41,51].
For CD8 T cell-mediated GVT, alloantigens must be present on both
recipient APC and tumor; tumor lines expressing co-stimulatory
molecules are also unable to substitute for professional APC [51].
In contrast, donor APC, while not required for GVT, are able to medi-
ate some CD8 T cell-dependent GVT activity at lower tumor burden
while sparing the effect of GVHD [35,41,51]. GVT appears to occur
at a lower threshold than GVHD in studies of escalated donor lym-
phocyte infusions in mice and humans, suggesting that access to
a narrow therapeutic window between GVT and GVHD is possible
[36,37]. In murine models, recipient lymphoid tissue DC are suffi-
cient to prime robust GVT responses and are readily accessible by
donor T cells in the hematopoietic compartment [35,51,52]. In con-
trast, recipient peripheral tissues are not infiltrated by alloreactive
donor T cells in the absence of inflammation [53]. The interaction
of donor T cells with lymphoid tissue, but not peripheral, DC pop-
ulations may achieve a selective benefit in promoting GVT without
GVHD [35,51–53].
5.3. Replacement of host DC by donor DC after allogeneic HCT

The replacement of host DC by donor DC is highly dependent
on the type of conditioning regimen. In mice, 30% host DCs are
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Fig. 2. Generation of miHA specific CD8 effector cells after allogeneic HCT. miHA constitutively expressed in many tissues are targets for a combined allo-reactive immune
response directed against the host tissue and the tumor and lead to GVHD and GVT. Whereas, T cell responses directed against antigens that are restricted to the hematopoietic
system including the malignant hematopoietic cell clone are likely to mediate GVT reactivity without severe GVHD. During the early days post-transplant, host DC are uniquely
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ble to present hematopoietic cell specific-miHA through the direct presentation
f GVHD and GVT. Later after transplantation, host hematopoietic cells including h
on-hematopoietic tissue miHA, since host hematopoietic cells are eliminated at
gainst hematopoietic malignancies.

till present in the spleen, 24 h after lethal irradiation and less
han 1% 48 h later ([39] and unpublished data). In the same model,
onor allogeneic T cells are activated 6 h after transplantation and
tart to proliferate 72 h after transplant [39]. Due to accessibility
ssues, human DC turnover after transplant has been mainly stud-
ed in peripheral blood. In patients that receive myelo-ablative and
on myelo-ablative regimens, the majority of circulating DCs are
f donor origin even in the presence of mixed chimerism in other
ineages ([54,55] and Mielcarek and Merad unpublished).

.4. DC subsets have different ability to induce T cell effector
esponses (Figs. 2 and 3)

We and others have established that DC represent a heteroge-
eous population of cells with different origin and functions [56].
on-lymphoid tissue CD103+ DC and lymphoid organ CD8+ DC

re developmentally related and have a unique ability to cross-
resent cell associated antigens to CD8+ T cells [56]. Mice lacking
he transcription factor Batf3, IRF8 and the inhibitor of DNA binding
rotein Id2 lack lymphoid tissue CD8+ DC and non lymphoid tissue
D103+ DC and are compromised in their ability to cross-present
ay but also cross-present tissue specific miHA playing a key role in the induction
C are replaced by donor-derived cells. Donor DC are mainly able to cross-present
oint. This may explain why donor DC are less important for the induction of GVT

cell associated antigens and prime anti-tumor and antiviral immu-
nity [57]. Tissue migratory DC instruct LN T cells to home to tissues
in which DC originally reside [58–60]. Consistently, T cells activated
by mesenteric LN DC leads to more severe gut GVHD compared to
splenic, skin draining LN or liver DCs after allogeneic HCT [61].

5.5. The conditioning regimen differently affects tissue DC subsets

In contrast to circulating DC, much less is known about the
turnover of tissue DC after allogeneic HCT. In mice and human
non-lymphoid tissues, DC turnover is affected by the intensity of
conditioning and status of GVHD [55,62,63]. In mice, DC that popu-
late the epidermis also called Langerhans cells (LC) can resist high
dose of irradiation [64] but are eliminated upon cutaneous GVHD
lesions [65]. Host remaining LC are sufficient [65] but not required
[66] to induce GVHD in MHC mismatch [65] and miHA mismatch

[67] transplant recipient. Host DC can also persist for prolonged
periods of time in the dermis of lethally irradiated animals [63].
In patients that receive allogeneic HCT, host epidermal LC remain
in the skin for weeks after transplant [68] especially in patients
that receive non myelo-ablative regimens ([62] and Mielcarek and
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ymphoid tissue resident CD103+ DC and lymphoid tissue resident CD8+ DC are dev
for a complete review see Ref. [56]). TAA; tumor associated antigen.

erad unpublished). The turnover of gut and liver DC after allo-
eneic HCT has been less explored.

.6. DC sensors in GVHD (Fig. 1)

Similar to other foreign proteins, host DC expressing miHA
rive efficient host specific donor T cell response and GVHD only

f host DC/donor T cell interaction occur in an inflammatory con-
ext. Tissue damage induced by the conditioning regimen control
C priming potential. Primary DC sensors of tissue damage after
llogeneic HCT remain unclear despite intense research efforts
y several laboratories. Studies have shown that HMGB1 levels

ncrease during GVHD and HMGB1 polymorphism correlates with
llogeneic HCT outcome in patients [69,70]. Myd88−/− recipient
ice develop GVHD [3] and TRIF and MyD88 deficient DC or plas-
acytoid DC add-back to irradiated MHC-deficient mice can still be

ctivated and lead to GVHD, suggesting that sensors other than TLR
ignals are sufficient to activate DC to initiate GVHD [47]. Random-
zed trial, using recombinant anti-human IL-1 receptor antagonist
Anikinra) failed to control GVHD [71] in patients suggesting that
ither inflammasome-mediated DC activation is not critical to the
nduction of GVHD or that Anikinra does not sufficiently inhibit
L-1 function after allogeneic HCT. Since bacterial translocation is
ommon after HCT [72], several studies have explored the role
f NOD2/CARD15, a molecule that recognizes muramyl dipeptide
MDP) produced by most bacteria [73] in HCT outcome. In murine
VHD model, NOD2 deficient DCs show enhanced ability to acti-
ate donor T cells, resulting in more severe GVHD compared to
ild type recipient, which is consistent with NOD2 modulatory role

bserved in other intestinal inflammatory models [74–78]. Consis-
ently, clinical studies also showed that NOD2 single nucleotide
olymorphisms are associated with higher GVHD risk although

hese results remain controversial (reviewed in [79]). Allogeneic
CT also leads to local production of C3a and C5a anaphylatox-

ns by APC and T cells. Binding of anaphylatoxins to C3aR and
5aR expressed on T cells and APC leads to T cell proliferation
nd the release of innate cytokines (e.g. IL-12, IL-23) and upreg-
type of DC subsets that populate non-lymphoid and lymphoid tissues in mice. Non
entally related and are uniquely equipped to cross-present cell associated antigens

ulation of co-stimulatory molecules (e.g. CD80) expression by APC,
which together amplify the effector T-cell response [80,81] and
contribute to the clinical expression of GVHD (Kwan, Merad and
Heeger unpublished)

6. Role of macrophages in graft versus host reactions

The current dogma suggests that similar to host DC, host
macrophages contribute to the induction of GVHD after allo-
geneic HCT. This concept was based on experiments showing that
the pre-transplant conditioning regimen leads to the release of
inflammatory cytokines by host macrophages [82], and that the
concomitant depletion of DC and macrophages improves GVHD
[83]. By developing new means to target host macrophages while
sparing host DC we have recently revisited the role of host
macrophages in GVHD (Hashimoto and Merad unpublished data).
Our data revealed that host DC and macrophages have opposite
contribution to GVHD outcome. In contrast to DC, host remain-
ing macrophages reduce the expansion of activated donor T cells
through their ability to engulf allo-reactive T cells and modu-
late T cell proliferation, and consequently limit the severity of
GVHD (Hashimoto and Merad unpublished data). The immune-
modulatory role of macrophages has already been reported in
several settings. In tumors, for example, macrophages modulate
T cell function through several mechanisms that include but are
not limited to the production of iNOS, arginase, and IDO [84,85].
These molecules have also been shown to modulate GVHD after
allogeneic HCT [86–90].

7. Therapeutic implications
The prominent role of host APC in initiating GVH responses and
the importance of GVT in eradicating human malignancy suggest
that DC targeted therapy has the potential to improve the thera-
peutic benefit of GVT in relation to GVHD. Below we summarize
potential DC-based strategies to improve allogeneic HCT outcome.
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Fig. 4. DC-based strategies to improve allogeneic HCT outcome. (A) DC targeting to reduce graft versus host reactions. Reduced intensity conditioning regimen, reduction
and modification of the gut flora, depletion of host DC using antibodies or donor NK cells and modulation of DC function reduce host DC ability to prime donor T cells to
host miHA and induce GVH reactions. Injection of tolerogenic DC and expansion of host macrophages could also be used to modulate donor T cell expansion and induction
of GVH responses. The main limitation of these strategies is that they also modulate GVT. (B) Strategy to reduce GVHD while preserving GVT. Donor T cell depletion from
the graft strongly reduces GVHD and GVT. To circumvent the reduction of GVT while preserving GVHD, donor lymphocytes injection will be provided only once the tissue
inflammation subsides. However since at later time-points most host hematopoietic cells are eliminated, one strategy to promote donor specific immunity to the malignant
clone will be also to provide activated host DC. Host DC vaccines are generated from circulating monocytes isolated prior to transplant and activated with LPS or CD40 ligand
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riming of donor T cells to host hematopoietic miHA, whereas injection of host activ

njury should limit donor T cell infiltration in peripheral tissues and the induction o

.1. Targeting APC to improve GVHD (Fig. 4)

As discussed above, host DC that remain in lymphoid tis-
ues for several days after the conditioning regimen control the
riming of donor T cells to host antigens and the induction of
VHD. Therefore depleting or modulating host DC function dur-

ng the peri-transplant setting should interfere with donor T cell
riming. Already conventional immuno-suppressive drugs such as
alcineurin inhibitors, mycophenolate mofetil and glucocorticoids
re now known to mediate some of their actions through DC mod-
lation [91–93]. Blocking antibodies to CD83 a molecule expressed
pecifically on activated DC prevent acute GVHD in a human
enograft mouse transplant model without impairing anti-viral
mmunity [94]. NK cells ability to improve GVHD is also thought
o be due to NK mediated depletion of host remaining APC [95],
lthough more recent studies suggest that NK cells also deplete
lloreactive donor T cells [96]. Flt3 signaling, in addition to its
nown function on progenitor cells, may have an additional role in
aintaining mature DC populations [97]. The development of small
olecule Flt3 inhibitors for treatment of leukemia [98] provides a

imely opportunity to test the effects of Flt3 inhibition on GVHD;
ncouraging results have already been achieved in the amelioration
f experimental autoimmune encephalomyelitis (EAE) [99].

In addition to modulating host DC function, injecting tolero-
enic DC or expanding immunosuppressive macrophages could
lso help modulate GVHD. Adaptive transfer of tolerogenic DC
enerated in the presence of GM-CSF, IL-10, TGF-�1 and LPS
100,101], histone deacetylase inhibitors such as suberoylanilide
ydroxamic acid (SAHA) [102] or vasoactive intestinal peptide (VIP)
103] have been shown to reduce GVHD when injected during

he peri-transplant setting in mice. We have recently found that
re-transplant administration of CSF-1, a cytokine required for
acrophage development, survival and proliferation in vivo [104]

xpand the host macrophage pool and dramatically improve GVHD
orbidity after allo HCT (Hashimoto and Merad unpublished data)
ible. Co-injection of donor lymphocytes and host activated DC should promote the
C pulsed with TAA may help expand TAA specific T cell response. Absence of tissue
D.

7.2. Harnessing DC to induce GVT

In contrast to solid tumors, very little studies have analyzed the
role of DC vaccines in GVT. DC vaccination at the time of transplant
has many advantages. Most transplanted patients have no or low
tumor burden, adoptively transferred donor T cells are not tolerant
to host antigens, the conditioning regimen eliminates host T regula-
tory cells, lymphopenic-induced homeostatic proliferation of donor
T cells decreases the priming threshold and expand relatively small
population of tumor reactive cells [105–108]. However, immuno-
suppression often aggravated by the occurrence of GVHD could
compromise vaccine efficacy [15,109], although recent results from
a phase I clinical trial in which inactivated GM-CSF secreting tumor
cells were administered early after allogeneic non-myeloablative
HCT in the presence of a calcineurin inhibitor was able to induce to
antigen specific priming without increasing GVHD [110].

The main risk of utilizing host DC vaccine to induce GVT is the
reactivation of GVHD. Consistently, adoptive transfer of host DC
after allogeneic HCT in mice increased GVT but also reactivated
GVHD [46]. However, as discussed above the interaction of donor T
cells with lymphoid, but not peripheral tissue DC populations may
achieve a selective benefit in promoting GVT without GVHD. This
argument underpins the logic of delayed T cell add back strategies
[111] and pre-emptive delayed DLI [112] which allow the inflam-
matory insult of conditioning to subside prior to the infusion of
donor T cells as discussed in the therapeutic section. Optimally
pre-emptive DLI could also be administered together with host DC
vaccines to promote the priming of an efficient donor T cells against
host miHA (Fig. 4).
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