Abstract
Crypt abscess (CD) is the highest prevalence in Ashkenazi Jewish (AJ) population. We sought to identify AJ-CD associated variants with high functional and statistical effects. Exome sequencing and ancestry-based genotyping was performed in 1,077 AJ-CD cases and 2014 AJ controls. Replication genotyping of the CD206 (complement regulatory factor I, complement inhibitory) frameshift was performed in 1,071 AJ-CD cases and 2014 AJ controls. Meta-analysis of CD206 frameshift with other AJ-CD variants showed evidence for the CD206 frameshift variant. However, the only AJ-CD variant associated with high functional and statistical effects was frameshift, which found in cellular transplantation and primary monocytosis studies. Our findings allow for the CD206 frameshift variant to be explored in future population-based associations, and aid in the development of novel therapeutic strategies for CD206 frameshift in AJ-CD.

Introduction
A major focus of our research is understanding the prevalence of CD in the Ashkenazi Jewish population. We are working on identifying rare disease associated variants in Ashkenazi Jewish ancestry. For example, to investigate the function of the CD206 frameshift variant, we performed experiments in vitro and in vivo. The CD206 frameshift variant corresponds to the CD206 frameshift variant, which has been identified in various disease settings. We are currently focused on investigating the impact of the CD206 frameshift variant on the development of rare diseases.

Functional studies: generating mutant cell line & recalling mutation carriers for peripheral blood monocytes signaling analysis

Figure 2: Schematic model of altered CBM signaling in the CD206 frameshift variant. (A) CBM signaling in the CD206 frameshift variant. (B) CBM signaling in the control. (C) CBM signaling in the CD206 frameshift variant. (D) CBM signaling in the control. (E) CBM signaling in the CD206 frameshift variant. (F) CBM signaling in the control. (G) CBM signaling in the CD206 frameshift variant. (H) CBM signaling in the control. (I) CBM signaling in the CD206 frameshift variant. (J) CBM signaling in the control.

Figure 3: Schematic model of altered CBM signaling in the CD206 frameshift variant. (A) CBM signaling in the CD206 frameshift variant. (B) CBM signaling in the control. (C) CBM signaling in the CD206 frameshift variant. (D) CBM signaling in the control. (E) CBM signaling in the CD206 frameshift variant. (F) CBM signaling in the control. (G) CBM signaling in the CD206 frameshift variant. (H) CBM signaling in the control. (I) CBM signaling in the CD206 frameshift variant. (J) CBM signaling in the control.